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Simulations of climate warming: declines in 
annual-mean snowfall in many regions
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Figure 2.  Multi-model ensemble trends in snowfall (2006 to 2100, units cm year-1 decade-1).  710 

Annual (A), SON (B), DJF (C), and MAM (D).   Contours of 2-m temperature at intervals of 10 711 
ºC are also shown from the multi-model ensemble for the period 1986-2005.  Hatching denotes 712 

regions of statistically significant trends (p <= 0.01). 713 
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CMIP5 multimodel mean trends in 
snowfall depth 

(2006-2100 based on rcp4.5)

Contours of 2m temperature shown 
in degrees Celsius for 1986-2005

Krasting et al, J. Climate, 2013



What about snowfall extremes? 
(heavy daily snowfall events)       

• Important because of disruption of transportation (roads, air, rail), 
business, schools

• May not respond to climate change like mean snowfall               
e.g., heavy snowfall events in both anomalously cold and warm years (Kunkel et al, 2013; 
Changnon et al 2006)

                



Regional studies of observed snowfall extremes: 
Decadal variability but inconsistent long-term trends
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FIG. 6. Nationally averaged 20-yr return values (relative to the values for 1971–90) of annual maximum daily
precipitation, rainfall, and snowfall. The 20-yr return values are first estimated using 20-yr running windows for every
station, and then normalized by the values estimated for the period 1971–90. Values are plotted in the center of the
20-yr window.

ally fewer events after the mid-1970s during both spring
and winter. This may also be related to the aforemen-
tioned changes in global circulation during the 1970s.
Heavy snowfall indices for autumn showed a significant
upward trend; however, strong decadal variations were
also apparent.

b. Magnitudes of heavy events

Temporal variations in the normalized magnitudes
(represented by the 90th percentiles, the annual maxima,
and the 20-yr return values) of daily precipitation, rain-
fall and snowfall also exhibited strong decadal variation.
For example, Fig. 6 shows the national averaged time
series of normalized 20-yr return values. The series
shows higher values in the early part of the twentieth
century, during the 1940s, and to a lesser degree during
the 1970s. Lower values occurred in the 1920s and
1950s. These variations are similar to those of heavy
event indices (Fig. 4).
These results are similar to previous Canadian studies

such as Hogg (1991) and Kunkel et al. (1999). They
are also consistent with Canadian streamflow trends
(Zhang et al. 2001), which showed no significant trends
in annual maximum daily mean flow over southern Can-
ada during the last half of the twentieth century. It there-
fore appears that at this point in history, increases in
the concentration of atmospheric greenhouse gases dur-
ing the twentieth century have not been associated with
a generalized increase in extreme precipitation over
Canada. The discrepancy between these findings and
those projected by GCMs (e.g., Zwiers and Kharin
1998) may be due to the current stage of global warm-

ing. The observed 18C warming trend over Canada
(Zhang et al. 2000) during the twentieth century may
be indicative of the early stages of the atmospheric re-
sponse to increased greenhouse gases forcing and as a
result, changes in extreme precipitation may not yet be
detectable. In fact, an ensemble of transient climate sim-
ulations revealed that changes in 20-yr return values of
annual maximum daily precipitation over Canada were
small given the globally averaged screen temperature
increase of 1.88C associated with CO2 doubling (Kharin
and Zwiers 2000). However, the 20-yr return values
showed much larger changes under 33 CO2 simulations
when globally averaged temperature increased by 3.88C.
As well, observed warming in Canada to date, has been
concentrated in winter and spring, seasons not expected
to contribute to increases in extreme rainfall events, at
least.

c. Percentiles of daily precipitation

In a recent investigation, Zhang et al. (2000) showed,
with additional station data, an increase in total precip-
itation over southern Canada during 1920–70 and over
northern Canada during the last 50 yr. As shown pre-
viously, heavy precipitation was not associated with sig-
nificant trend. Therefore, it was decided to examine
trends and variations in other areas of the daily precip-
itation (including rainfall and snowfall) distribution to
determine the portion of distribution responsible for the
increase in total precipitation. For every station, gamma
distributions are fitted for daily precipitation, rainfall,
and snowfall on an annual basis. Trends in nationally
averaged normalized values of various percentiles (ob-

Zhang et al, J. Climate, 2001 (Canadian observations)



Effect of climate change on daily snowfall 
extremes in global simulations

• High percentiles of daily snowfall in liquid water equivalent

• CMIP5 (use 20 models) under RCP8.5                  

• Compare warm climate (2081-2100) to control climate (1981-2000)



Analyze according to climatological temperature in 
control climate

Grid boxes and days binned by climatological monthly 
surface air temperature in control climate
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Response of mean snowfall to climate warming:
 ratio of warm over control-climate values
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Weaker response of daily snowfall extremes as 
compared to mean snowfall

99th, 99.9th and 99.99th percentiles of daily snowfall

Figure 1
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Features of the response of snowfall extremes that 
would like to understand:

• Climatological temperature at which snowfall extremes response 
goes from positive to negative

• Weaker fractional changes at higher percentiles                



Simple theory (based on known physics/
observations) for the response of snowfall 

extremes to changes in climate



Theory assumptions 1:
Relate daily snowfall rate (s) to precipitation rate (p) 

and surface air temperature (T)

from positive to negative at control-climate temperatures as high as -8�C in the multimodel median,

whereas mean snowfall decreases for control-climate temperatures above -14�C. Secondly, the

shapes of the ratio curves shown in Fig. 1a are different for mean snowfall and snowfall extremes.

As a result of these differences, fractional decreases are greater for mean snowfall as compared

to snowfall extremes for much of the control-climate temperature range considered here. Further-

more, the difference in behavior between mean and extremes is greater the higher the percentile

of snowfall considered. For example, mean snowfall decreases by 66% for the temperature bin

centered at -2.5�C whereas the 99.99th percentile of snowfall decreases by only 8%. Substantial

decreases in a given snowfall percentile tend to occur only for high control-climate temperatures

at which the percentile in question decreases towards zero in the control climate (Fig. S1 in the

Supplementary Information).

A simple theory is next developed that accounts for the main features of the response of snow-

fall extremes to climate change. Surface precipitation type depends on the vertical temperature

profile of the lower troposphere23, but to first order it may be related to surface air temperature22.

The daily snowfall rate s in the theory is related to the daily precipitation rate p by s = f(T )p,

where T is the daily surface air temperature, and f(T ) is the fraction of precipitation that falls

as snow (the snowfall fraction) at a given temperature T . The snowfall fraction in the simulations

shows a sharp decline near freezing in the multimodel median (Fig. 2) and in most of the individual

models (Fig. S2). This rain-snow transition need not occur precisely at a surface temperature of

0

�C because hydrometeors do not immediately change phase as they cross the melting level and

because of temperature variability within the time period used. The rain-snow transition in the
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Snowfall fraction: 

Figure 2 Daily surface air temperature (°C)
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Theory assumptions 2:
Relate precipitation rate (p) to temperature (T)

and simulated snowfall in Fig. 2. Importantly for the theory, and as expected given modest changes

in lapse rates, the rain-snow transition is almost exactly the same in the control and warm climates

(Fig. 2).

The daily precipitation rate in the theory is assumed to have a simple dependence on surface air

temperature according to p = e�(T�Tc)p̂, where � = 0.06�C�1 is a representative thermodynamic

rate of increase of extratropical precipitation extremes with respect to surface temperature related

to increases in saturation specific humidity (9). The normalized precipitation variable p̂ may be

thought of as a dynamic variable closely related to upward motion in the atmosphere; it is assumed

to follow a gamma distribution on wet days with scale parameter 1/� and shape parameter k. The

fraction of wet days is denoted f . The temperature T is assumed to be normally distributed with

mean T and standard deviation �, and p̂ and T are assumed to be independent for simplicity.

With these assumptions, asymptotic methods are used in the Supporting Material to evaluate the

integrals over T and p̂ involved in the calculation of percentiles of snowfall. The result is that the

qth percentile of snowfall sq is given by

(�sq)
2�k e�sq =

fp
2⇡��

�
1� q

100

�
�(k)

e�
(T�Tc)2

2�2 , (1)

which is valid asymptotically in the limit sq ! 1 (the extreme snowfall limit), and where � is the

gamma function. For a change in mean temperature of �T and assuming negligible changes in all

other parameters, the change in snowfall extremes, �sq, is given by the simple expression

�sq = � �T

�2�

✓
T +

�T

2
� Tc

◆
, (2)

which is valid asymptotically in the extreme snowfall limit, as shown in the Supporting Material.

According to (2), changes in snowfall extremes transition from positive to negative at a mean

temperature in the control climate of Tc � �T/2. The changes in snowfall extremes (2) are also

inversely proportional to temperature variability as measured by �2, which makes sense given that,

for example, temperature variability allows daily temperatures to reach below Tc even if the mean

temperature increases to above Tc. Importantly, the changes in snowfall extremes are independent

5

• Normalized precipitation variable    behaves like upward velocity; 
follows gamma distribution on wet days

• Temperature is normally distributed and independent of                  
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simulations occurs at slightly too low a temperature as compared with observations, but this is not

expected to effect the conclusions of the paper (see Supplementary Information). Importantly for

the climate-change response, and as expected given modest changes in lapse rates, the rain-snow

transition is almost exactly the same in the control and warm climates (Fig. 2).

The daily precipitation rate in the theory is assumed to have a simple dependence on surface

air temperature according to p = e�T p̂, where � = 0.06�C�1 is a representative thermodynamic

rate of increase of extratropical precipitation extremes with respect to surface temperature related to

changes in saturation specific humidity9. The normalized precipitation variable p̂ may be thought

of as a dynamic variable closely related to upward motion in the atmosphere; it is assumed to

follow a gamma distribution on wet days with scale parameter ��1 and shape parameter k. The

fraction of wet days is denoted w. The temperature T is assumed to be normally distributed with

mean T and standard deviation �, and p̂ and T are taken to be independent.

With these assumptions, asymptotic methods may be used to evaluate the integrals over

temperature and p̂ involved in the calculation of percentiles of snowfall (see Supplementary In-

formation). The inverse of the temperature dependence of the snowfall rate is denoted h(T ) =

exp(��T )f(T )�1. The asymptotics show that the behavior of snowfall extremes is dominated by

an optimal temperature Tm at which h(T ) reaches a minimum (roughly �2

�C in the simulations).

The optimal temperature arises because of the competition between increasing saturation specific

humidity and decreasing snowfall fraction with increasing temperature. The final result is that the

5



Integral expression for qth percentile of snowfall (sq)

→ Evaluate using asymptotic methods for large sq

wet days, such that its probability density function, P , is given by

P (p̂) = (1� w)�(p̂) +
w�k

�(k)
p̂k�1 e��p̂, (S1)

where �() is the delta function, w is the fraction of wet days, 1/� is the scale parameter, and k is the

shape parameter. (When applying the theory to the simulations, wet days are defined as days with

precipitation greater than 0.1 mm day�1 rather than precipitation greater than zero as described

here.) The temperature T and the normalized precipitation rate p̂ are assumed to be independent.

With these assumptions, the qth percentile of snowfall, s
q

, is exceeded if

p̂ e�Tf(T ) > s
q

, (S2)

which requires that p̂ > hs
q

where h(T ) = e��Tf(T )�1. Assuming s
q

is non-zero, the probability

that s
q

is exceeded may be written as

1� q

100

=

Z 1

�1
dT

Z 1

hsq

dp̂
w�k

�(k)
p̂k�1 e��p̂

1p
2⇡�

e�
(T�T )2

2�2 . (S3)

Asymptotic methods are next used to evaluate the double integral in (S3) in the extreme

snowfall limit of large s
q

. The integral in p̂ is first evaluated using a standard asymptotic expression

for the incomplete gamma function, S1

Z 1

z

dt tk�1e�t

= zk�1e�z

⇥
1 +O(z�1

)

⇤
, (S4)

in the limit of large z. Making the identifications

t = �p̂,

z = �hs
q
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2

where the fraction of wet days is    and



Asymptotics gives expression for snowfall extremes 
that involves optimal temperature Tm

qth percentile of snowfall sq is given by

(�sqhm)
3
2�k e�sqhm

=

w

�
�
1� q

100

�
�(k)

s
hm

h00
m

e�
(T�Tm)2

2�2 , (1)

which is valid asymptotically for large sq, and where � is the gamma function, hm is h evaluated

at Tm, and h00
m is the second derivative of h at Tm. For a change in mean temperature of �T and

assuming negligible changes in all other parameters, the change in snowfall extremes, �sq, is given

by the simple expression

�sq = � �T

�2�hm

✓
T +

�T

2

� Tm

◆
, (2)

as shown in the Supplementary Information.

According to the approximation (2), changes in snowfall extremes transition from positive to

negative at a mean temperature in the control climate of Tm��T/2. Changes in snowfall extremes

also depend inversely on temperature variability as measured by �2, which makes sense given that,

for example, temperature variability allows daily temperatures to reach below Tm even if the mean

temperature increases to above Tm. Importantly, the changes in snowfall extremes are independent

of the percentile considered, such that the fractional change �sq/sq is small for sufficiently large

sq. This is the main result from the theory – that the temperature dependencies of precipitation

extremes and the rain-snow transition lead to a response of snowfall extremes to climate warming

that is small compared with control-climate values. Snowfall extremes respond differently to cli-

mate change as compared to precipitation extremes or mean snowfall because snowfall extremes

tend to occur at temperatures close to the optimal temperature Tm (i.e., temperatures not far be-

low freezing) in both the control and warm climates, as is found to be the case in the simulations

6



Temperature dependence of snowfall reaches a 
maximum at Tm (roughly -2°C)

Competition between increasing precipitation and 
decreasing snowfall fraction with increasing temperature

Surface air temperature (°C)

f(T
) e

xp
(`

 T
)

−6 −4 −2 0 2



Simple result if only mean temperature changes

3

3. Derivation of simple expression for changes in high snow percentiles

The change in s
q

may be calculated by evaluating s
q

from (S9) in each climate and tak-
ing the difference. Alternatively, a simple expression is derived here for the change in
s
q

assuming that all parameters other than the mean temperature T remain constant. The
changes in s

q

and T between the control and warm climate are denoted �s
q

and �T , re-
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which is the same as (2) in the main body of the paper. According to (S12), the change
in snow extremes is independent of q, �, f , and k, although � > 0 is required for the
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is obtained, but this is less accurate for the simulations considered here.

4. Application of the theory to the simulations

The critical temperature for the rain-snow transition is set to T
c

= 0

�C to match the simu-
lations (Fig. 2). The parameter describing the thermodynamic dependence of precipitation
extremes is set to � = 0.06 �C�1. The other parameters in the theory are evaluated for
each control-climate temperature bin using the temperatures and precipitation rates aggre-
gated within the bin. Wet days are defined to occur when precipitation is at or above 0.1
mm day�1, and the gamma distribution is fit to wet-day values of p̂ using the method of
moments to estimate � and k. Because the tail of the distribution of p̂ is not exactly ex-
ponential, there is some sensitivity to how � and k are estimated; the agreement between
the theory and simulations shown in Fig. 1b is slightly improved if maximum likelihood is
used instead of the method of moments, but at the expense of underestimating the snow-
fall extremes in the control climate. One potential refinement would be to fit alternative
distributions to p̂ to improve the accuracy of the theory (ref. S3). The theory also assumes
that p̂ (a proxy for upward motion) and temperature are independent, but upward motion
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as shown in the Supplementary Information.

According to the approximation (2), changes in snowfall extremes transition from positive to

negative at a mean temperature in the control climate of Tm��T/2. Changes in snowfall extremes

also depend inversely on temperature variability as measured by �2, which makes sense given that,

for example, temperature variability allows daily temperatures to reach below Tm even if the mean

temperature increases to above Tm. Importantly, the changes in snowfall extremes are independent

of the percentile considered, such that the fractional change �sq/sq is small for sufficiently large

sq. This is the main result from the theory – that the temperature dependencies of precipitation

extremes and the rain-snow transition lead to a response of snowfall extremes to climate warming

that is small compared with control-climate values. Snowfall extremes respond differently to cli-

mate change as compared to precipitation extremes or mean snowfall because snowfall extremes

tend to occur at temperatures close to the optimal temperature Tm (i.e., temperatures not far be-

low freezing) in both the control and warm climates, as is found to be the case in the simulations
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Theory matches simulations  
(and dynamic changes don’t matter very much)

Shading shows interquartile range of model ratios
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Changes in snowfall extremes don’t depend on 
percentile q!

Example: same change for 99th percentile 
as 99.99th percentileof the percentile considered, such that the fractional change �sq tends to zero in the limit of high

percentiles (�sq/sq ! 0 as sq ! 1). This is the main result of the paper – that the temperature

dependencies of precipitation extremes and the rain-snow transition and the presence of temperature

variability lead to a weak response of snowfall extremes to climate warming, with zero fractional

change for sufficiently extreme snowfall.

The simple result (2) may be obtained more intuitively by using the property that snowfall

extremes tend to occur at temperatures close to Tc (i.e., temperatures not far below freezing) in

both the control and warm climates (Fig. 3). For much lower temperatures it is not “too cold to

snow”, but low saturation specific humidities make heavy snowfall unlikely. Consider the case,

illustrated in Fig. 4, in which the mean temperature is above Tc in the control climate. The joint

probability density function (PDF) of temperature T and normalized precipitation p̂ is the product

of a Gaussian in temperature and a gamma distribution in p̂. An increase in mean temperature

reduces the joint PDF in the preferred temperature range for extreme snowfall near Tc (Fig. 4a),

with the result that high percentiles of p̂ and snowfall must also decrease (Fig. 4b). At T = Tc,

the joint PDF has an exponential dependence on �(Tc � T )2/(2�2)� �p̂. If this remains the same

at p̂ = sq in each climate (Fig. 4b), as it must for the integral of the joint PDF over p̂ > sq at

T = Tc to remain the same, we find that ��
⇥
(Tc � T )2/(2�2)

⇤
� ��sq = 0. In the limit of a

small change in mean temperature, we find that �sq = �T (Tc � T )/(�2�) consistent with (2). So

the increase in mean temperature reduces the magnitude of snowfall extremes in this case, but by

an amount that is independent of the percentile considered, such that the change is a negligible

fraction of the snowfall extreme in the control climate for sufficiently high percentiles. By contrast,

the temperature at which precipitation extremes occur increases with warming resulting in greater

saturation vapor pressures and a fractional increase in precipitation extremes that is similar at all

high percentiles. Mean snowfall also responds differently to snowfall extremes because it depends

on the accumulation of all precipitation events at temperatures below the rain-snow transition (cf.

Fig 4a).
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Fractional changes in snowfall extremes tend to zero 
for high percentiles

99th to 99.99th percentiles of daily snowfall

Figure 1
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Intuition: Probability of optimal temperature (Tm) for 
snowfall extremes does change as climate warms

Also mean snowfall decrease substantially
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Fig. S7. Schematic illustrating the effect of climate change on the joint PDF of temperature (T ) and

normalized precipitation rate (p̂), and the resulting changes in high snowfall percentiles (s
q

). (a)

The joint PDF as a function of T at a fixed p̂ in the control (blue) and warm (red) climates. Both

the probability and mean rate of snowfall are greatly reduced in response to the shift to higher

temperatures. (b) The joint PDF at T = T
m

, close to which snowfall extremes tend to occur,

plotted as a function of the snowfall rate p̂/h
m

. In (b), the area under the joint PDF to the right of

s
q

is the same in each climate. Because a high percentile is considered, s
q

experiences a relatively

small fractional decrease.
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Fig. 4. Schematic illustrating the effect of climate change on the joint PDF of temperature (T ) and

normalized precipitation rate (p̂), and the resulting changes in high snowfall percentiles (sq). (a)

The joint PDF as a function of T at a fixed p̂ in the control (blue) and warm (red) climates. Snowfall

only occurs for T  Tc, and both the probability and mean rate of snowfall are greatly reduced in

response to the shift to higher temperatures. (b) The joint PDF as a function of p̂ at T = Tc, close

to which snowfall extremes tend to occur. In (b), the normalized precipitation rate is equal to the

precipitation rate since T = Tc, and the area under the joint PDF to the right of sq is roughly the

same in each climate. Because a high percentile is considered, sq experiences a relatively small

fractional decrease.
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Results in changes in snowfall percentiles

...but fractional change in sq is fairly small and is 
similar for all high percentiles
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Similar results above 
500m elevation    

(but models have 
issues there)
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Fig. S4. As in Fig. 1 but for grid points with elevations at or above 500m.
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Conclusions

• Simulations: Smaller fractional changes in snowfall extremes 
than in mean snowfall in many cases

• Simple asymptotic theory: captures main features of response
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sq. This is the main result from the theory – that the temperature dependencies of precipitation

extremes and the rain-snow transition lead to a response of snowfall extremes to climate warming

that is small compared with control-climate values. Snowfall extremes respond differently to cli-

mate change as compared to precipitation extremes or mean snowfall because snowfall extremes

tend to occur at temperatures close to the optimal temperature Tm (i.e., temperatures not far be-

low freezing) in both the control and warm climates, as is found to be the case in the simulations

6

• Implications: detection and perception of climate change, 
changes in snowfall extremes still likely to have impacts





By contrast: 
Probability of snowfall and mean snowfall decrease 

substantially

← Snow             Rain →

T

Jo
int

 P
DF

(a)

0 sq sq

Jo
int

 P
DF

 

 

p̂/hm

(b)
Control
Warm

   

0◦CTm

← Snow             Rain →

T

J
o
in

t 
P

D
F

(a)

0 sq sq

J
o
in

t 
P

D
F

 

 

p̂/hm

(b)

Control

Warm

Fig. S7. Schematic illustrating the effect of climate change on the joint PDF of temperature (T ) and

normalized precipitation rate (p̂), and the resulting changes in high snowfall percentiles (s
q

). (a)

The joint PDF as a function of T at a fixed p̂ in the control (blue) and warm (red) climates. Both

the probability and mean rate of snowfall are greatly reduced in response to the shift to higher

temperatures. (b) The joint PDF at T = T
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is the same in each climate. Because a high percentile is considered, s
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small fractional decrease.
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Big decrease in area under curve to left of 
rain-snow transition temperature



Rapidly changing snow cover in Northern Hemisphere

SCE declines are being driven largely by pervasive warming
pan-Arctic temperatures (as described in Screen et al. [2012]),
independent of these low-frequency climate variables.

3.2. CMIP Simulations of Arctic Snow Cover
[12] Monthly snow cover fraction (‘snc’) output from

8 CMIP5 models (Table 2) were acquired from the CMIP5
data portal (http://cmip-pcmdi.llnl.gov/cmip5/index.html) to
place the observed record low spring values in the context of
projected changes following Stroeve et al. [2007, 2012] for
summer sea ice extent. The 8 model subset represents
available snc output when the CMIP5 archive was consulted
in spring 2012 (somemodels were not included due tomissing
snc output). Output from the “Historical” experiment for
1850–2005 (takes into account observed climate forcing
including anthropogenic and volcanic influences on atmo-
spheric composition, solar forcing, aerosols, and land use
change) were combined with output from the future “high
emissions” representative concentration pathway scenario

rcp8.5 [Riahi et al., 2011] (2006 to 2100) to create a 150-year
time series of model simulated and projected snow cover.
One model run (typically the first member) was selected from
each model and monthly normalized SCE series generated
over NH land areas for the period 1900–2099. Snow covered
area was normalized for each month by the maximum
monthly area simulated by each model in the 1900–2099
period.
[13] Comparison of the NOAACDR and CMIP5 SCE series

for April, May and June (Figures 3a–3c) shows that the
NOAA observations are mostly within!1 standard deviation
of the multi-model ensemble in April, start to diverge from
the model consensus in recent years in May, and diverge
markedly from the model consensus in June since 2005.
The uncertainty range in simulated SCE shown in Figures 3a–
3c is actually a conservative underestimate because the CMIP5
simulations contain reduced interannual variability compared
to observed SCE from the NOAA snow chart CDR (Figure 4).
However, even when the inter-model range in June simulation

Table 2. CMIP5 Models Used to Examine Simulated and Projected Changes in Arctic Snow Cover Extent and Air Temperature

Acronym Institution
Resolution

(deg)

CanESM2 CCCma (Canadian Centre for Climate Modelling and Analysis, Canada) 2.81 " 2.81
CCSM4 NCAR (National Center for Atmospheric Research, USA) 0.93 " 1.25
CNRM-CM5 CNRM-CERFACS (Centre National de Recherches Meteorologiques/

Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique, France)
1.40 " 1.40

GISS-E2-R NASA-GISS (NASA-Goddard Institute for Space Studies, USA) 2.00 " 2.50
INMCM4 Institute for Numerical Mathematics, Russian Academy of Sciences, Russia 1.50 " 2.00
MIROC5 AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Japan),

NIES (National Institute for Environmental Studies, Japan), and JAMSTEC
(Japan Agency for Marine-Earth Science and Technology)

1.40 " 1.40

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.88 " 1.88
MRI-CGCM3 Meteorological Research Institute, Tsukuba, Japan 1.13 " 1.13

Figure 2. Time series of Northern Hemisphere June snow cover (NOAA snow chart CDR) and sea ice extent (NASATEAM)
for 1979–2012 (1979–2011 for sea ice). Thick line denotes 5-yr running mean.
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Probability of snowfall given that precipitation 
occurs

levels and averaged over all levels are shown in Figure 3b,
and the estimated parameters of equation (1) are plotted in
Figure 3c as a function of station pressure. From the sea
level to about 750 hPa, pressure’s effect is very small, as
shown by Figure 3a and the relatively small variations in the
estimated parameters (Figure 3c). Above 750 hPa, however,
pressure’s effect is evident, with T0.5 (see c in Figure 3c)

increasing from !1.0!C to 1.8!C and the slope (b in Figure
3c) decreasing from !0.7 to 0.4. The scaling factor a is also
lower (i.e., larger negative values) at higher pressures. The
overall effect is a more ocean-like F-Ts relationship at high
elevations (Ps < 700 hPa). Because the fall speed of rain-
drops and other hydrometeors decreases with air pressure
(p) at a rate of p"a, where a is about 0.4–0.5 [Stull, 2000;

Figure 3. (a) Observed conditional snow frequency (%) over land as a function of station air temperature and pressure.
(b) Observed (symbols) and fitted (lines) temperature-dependence of the conditional snow frequency (%) for 550–600 hPa,
750–800 hPa, and averaged over all pressure levels in Figure 3a. (c) The pressure-dependence of the estimated parameters
a, b, c and d of equation (1).

L12802 DAI: RAIN-SNOW PHASE TRANSITION L12802
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Dai, GRL, 20083-hourly synoptic weather reports over land aggregated globally



Rain-snow transition in climate models (CMIP5) 
versus observations

- 3-hourly observed (Dai 2008): 2 curves depending on whether mixed counted as snow
- Daily accumulations in multimodel median (black) and individual models (gray); snowfall 
taken to occur if precipitation is 50% solid
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Fig. S2. Conditional probability of snowfall over land as in Fig. 2 but showing the multi-
model median only in the control climate (the black solid line) and showing the probabili-
ties for individual models in the control climate (gray lines).



Intuition: snowfall extremes occur when 
temperatures close to freezing 

(otherwise too cold to snow heavily)

Climatological temperature (°C) in control climate
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Fig. 3. Multimodel-median surface air temperatures at which snowfall extremes occur (solid lines)

as a function of climatological monthly surface air temperature in the control climate. For each

control-climate temperature bin and for each of the control (blue) and warm (red) climates, surface

air temperatures are averaged over all grid points and days for which the daily snowfall is at or

above the 99.99th percentile of snowfall in that climate. For comparison, mean temperatures in

both climates are also shown for each bin (dashed lines). The dashed blue line is almost exactly the

one-to-one line (slight deviations from this relate to sampling variability within temperature bins).

Only land gridboxes in the Northern Hemisphere below 500m elevation are included in this figure.
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Note snowfall extremes remain at roughly same temperature (with same 
humidities) as climate changes - unlike rainfall extremes



Quiz:  World record daily snowfall

Where?

How much (inches of depth)?
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RECORD  SNOWFALL 

A snowfall of 87 inches in 

OF APRIL 14-15,1921, AT  SILVER LAKE, COLORADO 
J. L. H. PAULHUS 

U. S. Weather  Bureau,  Washlngton. D. C. 
[Manuscript  received  January 27, 19531 

ABSTRACT 
27% hours on April 14-15, 1921, was reported at Silver Lake, Colo. This snowfall, if 

INTRODUCTION 

Although the meteorologist and hydrologist are generally 
interested in the water  equivalent of a snowfall rather  than 
in the snow depth,  there  are  many, including the general 
public, highway and  street maintenance engineers, etc., 
who are very much interested  in the  depth. Consequently, 
snowfalls of unusual depth receive a  great deal of publicity 
in the press and in some meteorological publications. 

While no large-scale survey of depths of snowfall 
throughout the  United  States  has ever been made, several 
outstanding values printed in a few  meteorological pub- 
lications have been accepted, at least by inference, as 
record  values. Thus,  the 60-inch snowfall at  Giant  Forest, 
Calif.,  on January 18-19,  1933, has been accepted by  many 
as being the maximum of record in  the United States for 
a 24-hour period. Similarly, the  Giant  Forest snowfall 
of 87 inches on  February 12-14, 1926, and  the Vance- 
boro, Maine, snowfall of 96 inches on December 6-10, 
1933, have been accepted as record values for 3  and  4  days, 
respectively. 

Recently, attention was called to  the reported snowfall 
of 87  inches in 27% hours at  Silver Lake, Colo., on April 
14-15,  1921. In  the same  storm, Fry's  Ranch, Colo., 
reported 62 inches in 22 hours. Both measurements 
exceed the  Giant  Forest record value for 24 hours. ?ro- 
rated for 22- and 24-hour periods, the Silver Lake measure- 
ment yields 70 and 76 inches, respectively, indicating 
without doubt an outstanding snowfall rate for those 
durations. The 87-inch measurement actually equaled 
the  amount generally accepted as being the record value 
for three  days that was observed at  Giant  Forest on 
February 12-14,  1926. 

The Silver Lake snowfall continued beyond the 27%- 
hour period to establish new records. During the 
32S-hour  period of more or less continuous snowfall from 
1430 MST, April 14 to 2300 MST, April 15,95 inches was 
reported. If the small snowfalls of April 12 and 13 are 
added to  this  amount, a record value of 100 inches in a 
total elapsed time (including brektks)  of 85 hours is 

EVALUATION OF RELIABILITY 
Because of the new records established, the Silver Lake 

measurement was examined very thoroughly before  being 
accepted. High winds on April 15 undoubtedly drifted 
the snow and made it difficult t o  choose a site  having a 
representative  depth. However, there  is  no evidence to 
indicate that  the Silver Lake observer used  less care in 
obtaining a representative snow depth  than did  the 
observers who measured the previous record snowfalls at 
Giant  Forest  and Vanceboro, which  were  also evidently 
accompanied by relatively high winds. Consequently, 
the Silver Lake measurement cannot be discarded on this 
basis. 

The  water equivalent of the  major portion of the snow- 
fall, the 87 inches which  fell in  the 27% hours between 1430 
MST, April  14, and 1800 MST, April  15,  was reported as 
5.60 inches, making the snow density (ratio of water 
equivalent  to snow depth) 0.06. This low value of snow 
density is not unusual at  the 10,000-ft. level (Silver  Lake 
elevation 10,220 ft.),  but does appear low for a snow layer 
more than 7 feet deep. However, of  16 stations above 
the 7,000-ft. level in  the  area reporting snowfall in the 
same storm, eleven reported snow densities under 0.10 
and none over 0.13. Table 1, which lists the  stations in 
decreasing order of elevation, shows that  the water 
equivalent at Silver Lake compares favorably with that 
at other  stations in the vicinity. 

World record (probably): 75.8 inches in 24 hours



Changes in precipitation extremes: 
some aspects are well understood!

• Theory

• Climate models                                                                 

• Observed trends



Theory: factors controlling intensity of precipitation 
extremes

O’Gorman and Schneider, PNAS, 2009
O’Gorman and Schneider, J. Climate, 2009

Simple scaling captures changes in simulated 
precipitation extremes

Precipitation rate

Moist adiabatic 
derivative

Vertical velocity

Saturation specific humidity

O’Gorman and Schneider, PNAS, 2009
O’Gorman and Schneider, J. Climate, 2009

the mean water vapor content, which change differently in part
because the relative humidity does not stay exactly constant as
the climate warms (20). Therefore, we also calculate the satu-
ration water vapor content of the troposphere from an average
of climatological monthly-mean temperatures over the longi-
tudes and days when the extreme precipitation occurs. The
conclusions are qualitatively similar, irrespective of whether
changes in precipitation extremes are compared with changes in
this measure of saturation water vapor content or in mean water
vapor content (Fig. 2). For example, the median rate of increase
in the 99.9th percentile of precipitation at 30°N and 30°S is
approximately half the median rate of increase in saturation
water vapor content. So precipitation extremes do not scale with
the local seasonal mean saturation water vapor content of the
atmosphere either.

Precipitation Extremes Scaling. The changes in precipitation ex-
tremes seen in the climate simulations can be understood by
considering the dynamics and thermodynamics of precipitation
events (8, 21). In such events, air rises and cools adiabatically,
water vapor condenses, latent heat is released, and condensate
precipitates. The condensation rate needed to maintain the
water vapor content of the rising air near saturation is given by

c!"!
dqs

dp
!

"*
, [1]

where ! is the vertical velocity in pressure (p) coordinates, and
the derivative of the saturation specific humidity (qs) is taken
along a moist adiabat with constant saturation equivalent po-
tential temperature ("*) (8). We are assuming that diabatic
processes other than latent heating are negligible when precip-
itation extremes occur. The condensation rate (Eq. 1), and with
it the precipitation rate, in precipitation extremes does not
increase as rapidly with temperature as the saturation specific
humidity because the moist-adiabatic derivative of saturation
specific humidity, dqs/dp""*, does not increase as rapidly with
temperature as the saturation specific humidity (22). For exam-
ple, at a temperature of 280 K and a pressure of 800 hPa, it
increases with temperature at 2.9% K"1, compared with 6.9%
K"1 for the saturation specific humidity (Fig. S2). The difference
arises because the rate of decrease of temperature for rising air
(the moist-adiabatic lapse rate) is smaller at higher tempera-
tures.

Because along a moist adiabat, dqs # "(cp/L)(T/")d", with dry
potential temperature " and assuming a constant latent heat of
vaporization L, the condensation rate (Eq. 1) can alternatively be
written as c # ! cpT/(L")d"/dp""*, where cp is the heat capacity
of air (22). The latent heat release in condensation balances the
product of the vertical velocity and a static stability measure
along a moist adiabat, that is, it balances the adiabatic cooling in
updrafts. The smaller increase in precipitation extremes than in
water vapor content as the climate warms can then be viewed as
consequence of this static stability changing more slowly with
temperature than the saturation specific humidity. An alterna-
tive derivation of the expression (Eq. 1) for the condensation
rate that is applicable to the tropics (and applies equally well to
evaporation in downdrafts) follows from the Eulerian thermo-
dynamic equation by neglecting horizontal, temporal, and radi-
ative tendencies, and using that the static stability is approxi-
mately moist adiabatic.

Precipitation extremes depend on the temperatures at which
they occur, which, in middle and high latitudes, are generally
higher than the local climatological mean temperatures. For
example, during the events when the 99.9th percentile of daily
precipitation occurs, according to NCEP2 reanalysis tempera-
ture data (23) and GPCP precipitation data (19), extratropical

temperatures at 600 hPa are up to 5 K higher than in the mean
(Fig. S3).‡ The temperatures at which extreme precipitation
events occur need not increase at the same rate as the local
climatological mean temperatures; for example, at latitudes
where precipitation is related to poleward movement of air
masses, they may be tied more closely to mean temperatures
farther equatorward, and mean temperatures change differently
at different latitudes in global warming simulations (25).

Taking into account these factors, we can express the intensity
of precipitation extremes at a given latitude as

Pe # "$ !e
dqs

dp !
"*,Te

% . [2]

Here, Pe is a high percentile of precipitation, !e the correspond-
ing upward vertical velocity, {!} is a mass-weighted integral over
the troposphere, and the moist-adiabatic derivative of saturation
specific humidity is evaluated at the conditional mean temper-
ature Te when extreme precipitation occurs. A large-scale aver-
age over precipitation systems is implied, so that !e is a net
upward velocity including the contribution of any convective
downdrafts driven by reevaporation of condensate, and the net
precipitation rate Pe appears on the left-hand side rather than a
column-integrated condensation rate. A similar scaling agrees
with the behavior of precipitation extremes in simulations of a
wide range of climates with an idealized general circulation
model (8). We evaluate the temperature Te and upward velocity
!e as an average over all days and longitudes at which extreme
precipitation occurs,§ using the vertical velocity ! resolved on the
models’ grid, not including a subgrid component. The scaling
(Eq. 2) captures the behavior of the precipitation extremes at all
latitudes in the multimodel median of the global warming
simulations (Fig. 2), and in the simulations individually, except
for one outlier (Fig. 3B).

The precipitation extremes scaling can be simplified under
certain conditions, so that precipitation extremes scale with the
mean moisture convergence at the base of storms, as suggested
in ref. 7. If the thermal structure of the atmosphere is moist
adiabatic on large scales when precipitation extremes occur, and
if the vertical structure of the vertical velocity is neglected, then
the precipitation extremes scaling can be directly integrated in
the vertical, with the result that it behaves like the low-level
saturation specific humidity multiplied by a measure of the
vertical velocity or low-level mass convergence (8). There is no
a priori justification for neglecting the vertical structure of the
vertical velocity, but once this assumption is made and the
vertical integral is performed, the boundary term at the tropo-
pause is negligible. In the extratropics, the atmosphere can be
more stable than moist adiabatic, and so the precipitation
extremes scaling cannot be generally simplified in this way,
except in the case of sufficiently deep vertical or slantwise moist
convection. Nevertheless, for the climate change simulations
considered here, the changes in the thermodynamic precipita-
tion extremes scaling are similar to the changes in saturation
specific humidity evaluated using the lowest-level temperature
when precipitation extremes occur (Fig. S4). If a higher level is
used (e.g., at the top of the boundary layer), the agreement is
worse. In the tropics, the low-level saturation specific humidity
increases more slowly with temperature than the atmospheric

‡Analysis of the covariability of monthly mean precipitation and surface temperature also
reveals a positive correlation between temperature anomalies and precipitation at high
latitudes in winter, but different correlations in other seasons and regions (24); these
results are not directly comparable with our study because we use daily data and extremes
of precipitation.

§The scaling used here is more general than that used in ref. 8, where it was assumed that
the extreme upward velocity scales with the root-mean-square vertical velocity.
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Growth of precipitation extremes 
with warming in simulations with climate models

CMIP3 multi-model mean 99.9th percentile of daily precipitation 
(20c3m to A1B) and current observations (GPCP)

O’Gorman and Schneider, PNAS, 2009

Climatology Project (GPCP) (19) (Fig. 1). However, there are
considerable uncertainties in observations of precipitation, and
other studies using different datasets or different measures of
precipitation extremes have found that climate models under-
estimate precipitation extremes relative to observations (10–12,
†). The simulated precipitation extremes increase at all latitudes
as the climate warms, particularly in the tropics where they are
largest (Fig. 1). The water vapor content of the atmosphere also
increases at all latitudes, but precipitation extremes do not scale
with the water vapor content (Fig. 2). In the multimodel median,
precipitation extremes increase with global-mean surface air
temperature at a smaller rate than the zonal-mean atmospheric
water vapor content (Fig. 2). For example, at 60°N, the 99.9th
percentile of daily precipitation increases at 6% K!1 in the
multimodel median, compared with 10% K!1 for the atmo-
spheric water vapor content. (Both rates of increase are nor-
malized by the change in global-mean surface air temperature
for each model before taking the median among all models.)
There is larger intermodel scatter in the tropics than in the
extratropics in both the precipitation extremes and their frac-
tional changes with warming (Figs. 1 and 2).

Precipitation extremes also do not scale with water vapor
content in individual models. Extratropical precipitation ex-
tremes consistently increase less rapidly with surface air tem-
perature than does the extratropical water vapor content (Fig.
3A). The rate of change in tropical precipitation extremes varies
widely among models; changes in tropical precipitation extremes
normalized by the increase in tropical surface air temperature
range from 1.3% K!1 to 30% K!1. (Models with small tropical
increases can be more easily distinguished in Fig. S1, which is the
same as Fig. 3 but with logarithmic axis scales.) In most models,
tropical precipitation extremes increase less rapidly than or at a
similar rate as tropical water vapor content; for two outlying
models (both from GFDL), the increases in tropical precipita-
tion extremes are much greater. The behavior of tropical pre-
cipitation extremes in the GFDL models is also sensitive to the
percentile considered, with close to zero ("1% K!1) changes in
tropical precipitation extremes at the 99th percentile.

Precipitation extremes may occur preferentially in certain
seasons or at certain longitudes. Furthermore, one may hypoth-
esize that precipitation extremes depend on the saturation water
vapor content of the atmosphere when they occur, rather than on

†Models and observations may agree more closely in our study than in some other studies
in part because we use percentiles of precipitation including all days (dry and wet) and
because we spatially average observations to typical model resolution. The precipitation
extremes scaling discussed below implies that if models approximately reproduce the
distribution of vertical velocities but inaccurately simulate the frequency of wet days,
inclusion of all days in the percentile analysis will give the most favorable comparison.

Fig. 2. Fractional changes in the 99.9th percentile of daily precipitation
(blue), zonally averaged atmospheric water vapor content (green), saturation
water vapor content of the troposphere (black dotted), full precipitation
extremes scaling (Eq. 2) (red dashed), and thermodynamic scaling for precip-
itation extremes (black dashed). The lines show multimodel medians of the
fractional changes relative to 20th-century values, normalized by the global-
mean change in surface air temperature for each model. Model scatter is
shown for the fractional change in precipitation extremes using the inter-
quartile range (shading). The saturation water vapor content is calculated
using an average of the climatological monthly-mean temperature over all
times and longitudes at which the extreme precipitation occurs.

A

B

Fig. 3. Fractional changes in the 99.9th percentile of daily precipitation for
each model versus changes in atmospheric water vapor content and scalings
for precipitation extremes. (A) Atmospheric water vapor content (open sym-
bols) and the thermodynamic scaling that neglects changes in upward velocity
(solid symbols). (B) Full scaling for precipitation extremes. The fractional
change are relative to 20th-century values, averaged over the extratropics
(Left) or tropics (Right) and normalized by the change in surface air temper-
ature averaged over the extratropics or tropics. Solid lines correspond to
one-to-one relationships. The extratropics are defined as the regions pole-
ward of 30° latitude, and the tropics are defined as the region equatorward
of 30° latitude.

Fig. 1. The 99.9th percentile of daily precipitation (millimeters per day) for
the periods 1981–2000 (blue) and 2081–2100 (red) in the SRES A1B scenario
(multimodel median), and based on Global Precipitation Climatology Project
(GPCP) data for the period 1997–2006 (black). Model scatter (shading) for the
period 1981–2000 is shown using the interquartile range (50% of models lie
within the shaded region). The spatial resolution of the GPCP data were
degraded from 1° to 3°, which is comparable with climate model resolutions.
A Gaussian smoothing filter of standard deviation 6° latitude was applied to
reduce noise in all plots showing variations with latitude.

14774 ! www.pnas.org"cgi"doi"10.1073"pnas.0907610106 O’Gorman and Schneider
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Figure 1 | Time series of precipitation extremes and surface temperature
over the tropical oceans in observations and simulations (GFDL-CM2.0
and ECHAM5/MPI). Anomalies in the 99.9th percentile of precipitation
(blue) and surface temperature rescaled by the sensitivity (% K�1) for
variability in each case (green) are shown. Also shown (red) for the models
are surface temperature anomalies rescaled by the sensitivity for variability
implied by the sensitivity for climate change (over the whole tropics) and
the regression relationship between sensitivities for variability and climate
change for all the CMIP3 models (Supplementary Table S1). Time series are
filtered with a 6-month running average.

generally analysed over the tropical oceans because this is found
to give the strongest constraint on sensitivities for climate change.
Results are also reported using variability over thewhole tropics.

Time series are first constructed of precipitation extremes and
mean surface temperature over the tropical oceans between 30� S
and 30� N (Methods). The influence of ENSO on precipitation
extremes over the tropical oceans is clearly evident in observations,
as shown in Fig. 1 for the 99.9th percentile of daily precipitation and
consistent with results from previous studies4–6. Positive anomalies
in surface temperature tend to be associatedwith positive anomalies
in precipitation extremes; the calculated sensitivity to surface
temperature (Methods) is 25%K�1 with a 90% confidence interval
of 16–36%K�1. A similar behaviour is found in the climate-model
simulations, but with different time series of surface temperature
because coupled models are considered, and with very different
sensitivities depending on the climate model used (Fig. 1 and
Supplementary Fig. S1).

Sensitivities for climate change are calculated over the whole
tropics in the climate model simulations and are normalized
by changes in mean surface temperature (Methods). For the
99.9th percentile of precipitation, the sensitivities for climate
change are strongly correlated across models with the sensitivities
for variability (Fig. 2), with a correlation coefficient of 0.866.
The relationship between sensitivities is further quantified using
ordinary-least-squares regression (Supplementary Table S1). The
regression line passes close to the origin, and the sensitivity for
variability is greater than the sensitivity for climate change by
roughly a factor of 2.5.

The relationship between the sensitivities for variability and
climate change, together with the observed sensitivity for variability,
yields an inferred sensitivity for climate change. For the 99.9th
percentile of precipitation, the inferred sensitivity for climate
change is 10%K�1, which is higher than what most of the models
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Figure 2 | Sensitivities (%K�1) of the 99.9th percentile of precipitation
for variability versus climate change in the CMIP3 simulations. The solid
line shows the ordinary-least-squares best fit. Histograms show estimates
(with uncertainty) of the observed sensitivity for variability and the inferred
sensitivity for climate change. Sensitivities for variability are over the
tropical oceans and sensitivities for climate change are over the
whole tropics.

simulate (Fig. 2). Uncertainty is estimated by a bootstrapping
procedure involving resampling of the models used and 12-month
blocks in the observed and simulated time series (Methods). The
resulting 90% confidence interval of 6–14%K�1 is substantially
narrower than the inter-model scatter of 2–23%K�1, clearly
illustrating the value of the observational constraint.

The inferred sensitivity for climate change increases with
percentile from the 98th to the 99.9th percentile and decreases
slightly to the 99.95th percentile (Fig. 3a); it generally exceeds
the multimodel-median sensitivity (and by as much as 68%),
although it maximizes at the 99.9th percentile whereas the
multimodel median continues to increase with percentile. Both
intermodel scatter and the strength of the relationship between
sensitivities for variability and climate change increase with
percentile (Supplementary Table S1), such that the observational
constraint ismore useful for higher percentiles of precipitation.

The inferred sensitivities were also calculated for climate change
over land only, with variability over the ocean as before. A strong
relationship holds between climate change and variability for
the higher percentiles of precipitation considered (Supplementary
Fig. S2 and Table S2), and the inferred sensitivities for climate
change over land approach the sensitivities over the whole tropics
at these percentiles (Fig. 3b). This similar response over land and
the whole tropics occurs despite ⇠60% greater surface warming
over land than ocean (all sensitivities for climate change are
normalized by temperature changes over the whole tropics for ease
of comparison). Indeed, the percentage changes in precipitation
extremes in the simulations of climate change are close to equal over
land and ocean across all themodels (Supplementary Fig. S3), which
is likely related to the importance of oceanic water vapour sources
for precipitation over land and to decreases in land surface-air
relative humidity under global warming25.

For the ‘good-ENSO’ subset of models (Supplementary Infor-
mation), the relationship between sensitivities for climate change
and variability is very tight for the 99.9th percentile of precipitation
(Supplementary Fig. S4), with a correlation coefficient of 0.997, and
the resulting inferred sensitivities for climate change are similar to
what is obtained using all the models (Supplementary Table S1).
This robustness suggests that the inferred response to climate
change is not strongly affected by the relatively poor quality of
simulated ENSO temperature variability in some of the model
simulations. Similar results are also obtained using the CMIP5
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Figure 1 | Time series of precipitation extremes and surface temperature
over the tropical oceans in observations and simulations (GFDL-CM2.0
and ECHAM5/MPI). Anomalies in the 99.9th percentile of precipitation
(blue) and surface temperature rescaled by the sensitivity (% K�1) for
variability in each case (green) are shown. Also shown (red) for the models
are surface temperature anomalies rescaled by the sensitivity for variability
implied by the sensitivity for climate change (over the whole tropics) and
the regression relationship between sensitivities for variability and climate
change for all the CMIP3 models (Supplementary Table S1). Time series are
filtered with a 6-month running average.

generally analysed over the tropical oceans because this is found
to give the strongest constraint on sensitivities for climate change.
Results are also reported using variability over thewhole tropics.

Time series are first constructed of precipitation extremes and
mean surface temperature over the tropical oceans between 30� S
and 30� N (Methods). The influence of ENSO on precipitation
extremes over the tropical oceans is clearly evident in observations,
as shown in Fig. 1 for the 99.9th percentile of daily precipitation and
consistent with results from previous studies4–6. Positive anomalies
in surface temperature tend to be associatedwith positive anomalies
in precipitation extremes; the calculated sensitivity to surface
temperature (Methods) is 25%K�1 with a 90% confidence interval
of 16–36%K�1. A similar behaviour is found in the climate-model
simulations, but with different time series of surface temperature
because coupled models are considered, and with very different
sensitivities depending on the climate model used (Fig. 1 and
Supplementary Fig. S1).

Sensitivities for climate change are calculated over the whole
tropics in the climate model simulations and are normalized
by changes in mean surface temperature (Methods). For the
99.9th percentile of precipitation, the sensitivities for climate
change are strongly correlated across models with the sensitivities
for variability (Fig. 2), with a correlation coefficient of 0.866.
The relationship between sensitivities is further quantified using
ordinary-least-squares regression (Supplementary Table S1). The
regression line passes close to the origin, and the sensitivity for
variability is greater than the sensitivity for climate change by
roughly a factor of 2.5.

The relationship between the sensitivities for variability and
climate change, together with the observed sensitivity for variability,
yields an inferred sensitivity for climate change. For the 99.9th
percentile of precipitation, the inferred sensitivity for climate
change is 10%K�1, which is higher than what most of the models
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Figure 2 | Sensitivities (%K�1) of the 99.9th percentile of precipitation
for variability versus climate change in the CMIP3 simulations. The solid
line shows the ordinary-least-squares best fit. Histograms show estimates
(with uncertainty) of the observed sensitivity for variability and the inferred
sensitivity for climate change. Sensitivities for variability are over the
tropical oceans and sensitivities for climate change are over the
whole tropics.

simulate (Fig. 2). Uncertainty is estimated by a bootstrapping
procedure involving resampling of the models used and 12-month
blocks in the observed and simulated time series (Methods). The
resulting 90% confidence interval of 6–14%K�1 is substantially
narrower than the inter-model scatter of 2–23%K�1, clearly
illustrating the value of the observational constraint.

The inferred sensitivity for climate change increases with
percentile from the 98th to the 99.9th percentile and decreases
slightly to the 99.95th percentile (Fig. 3a); it generally exceeds
the multimodel-median sensitivity (and by as much as 68%),
although it maximizes at the 99.9th percentile whereas the
multimodel median continues to increase with percentile. Both
intermodel scatter and the strength of the relationship between
sensitivities for variability and climate change increase with
percentile (Supplementary Table S1), such that the observational
constraint ismore useful for higher percentiles of precipitation.

The inferred sensitivities were also calculated for climate change
over land only, with variability over the ocean as before. A strong
relationship holds between climate change and variability for
the higher percentiles of precipitation considered (Supplementary
Fig. S2 and Table S2), and the inferred sensitivities for climate
change over land approach the sensitivities over the whole tropics
at these percentiles (Fig. 3b). This similar response over land and
the whole tropics occurs despite ⇠60% greater surface warming
over land than ocean (all sensitivities for climate change are
normalized by temperature changes over the whole tropics for ease
of comparison). Indeed, the percentage changes in precipitation
extremes in the simulations of climate change are close to equal over
land and ocean across all themodels (Supplementary Fig. S3), which
is likely related to the importance of oceanic water vapour sources
for precipitation over land and to decreases in land surface-air
relative humidity under global warming25.

For the ‘good-ENSO’ subset of models (Supplementary Infor-
mation), the relationship between sensitivities for climate change
and variability is very tight for the 99.9th percentile of precipitation
(Supplementary Fig. S4), with a correlation coefficient of 0.997, and
the resulting inferred sensitivities for climate change are similar to
what is obtained using all the models (Supplementary Table S1).
This robustness suggests that the inferred response to climate
change is not strongly affected by the relatively poor quality of
simulated ENSO temperature variability in some of the model
simulations. Similar results are also obtained using the CMIP5
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(see also Muller, O’Gorman, Back 2011)

Use observed 
variability to constrain:

 10±4%/K
(O’Gorman, Nature Geo. 2012)

Problem: Response of tropical precipitation 
extremes varies widely between models



Observed trends in annual-maximum
 precipitation over land

Sensitivity (%) of annual maximum precipitation per kelvin warming of global near-
surface temperature (1900-2009; records > 30 years), with light blue shading indicating 
the upper 97.5% confidence bound

Westra et al, J. Climate, 2013

the median sensitivity, is remarkably constant (ranging
from 6.5%K21 for the longest threshold to 7.7%K21 for
the shortest threshold), indicating an absence of system-
atic biases caused by record length. The percentage of
stations with significant positive associations increases
from 10.0% (30-yr threshold) to 11.7% (70-yr threshold).
This is likely to be because of the enhanced statistical
power of the likelihood ratio test for longer records.
Considering the two subperiods, it can be seen that

results are again very consistent with those of the

preceding analysis. For the period from 1900 to 1959, on
average, 59% of stations show positive association, with
a median percentage increase of 5.9%K21 global average
surface temperature. The more recent period from 1960
to 2009 shows a slightly higher percentage of stations
with increasing trends and a temperature sensitivity of
7.2%K21. The general conclusion appears to be that
neither record length nor sampling period has a substantial
effect on the relationship between annual maximum pre-
cipitation and globally averaged near-surface temperature.

FIG. 12. Variation in the estimated sensitivity of annual maximum precipitation to a 1K
increase in global mean temperature by latitude. (top) The number of stations within each658
latitude band. (middle) The fraction of stations exhibiting significant positive association, with
light blue shading indicating the upper 97.5% confidence bound and dark blue shading in-
dicating the median of the confidence interval. (bottom) Sensitivity (%) of annual maximum
precipitation per kelvin warming of global near-surface temperature, with light blue shading
indicating the upper 97.5% confidence bound.
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Intuition: snowfall extremes occur when 
temperatures close to freezing 

(otherwise too cold to snow heavily)
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Fig. 3. Multimodel-median surface air temperatures at which snowfall extremes occur (solid lines)

as a function of climatological monthly surface air temperature in the control climate. For each

control-climate temperature bin and for each of the control (blue) and warm (red) climates, surface

air temperatures are averaged over all grid points and days for which the daily snowfall is at or

above the 99.99th percentile of snowfall in that climate. For comparison, mean temperatures in

both climates are also shown for each bin (dashed lines). The dashed blue line is almost exactly the

one-to-one line (slight deviations from this relate to sampling variability within temperature bins).

Only land gridboxes in the Northern Hemisphere below 500m elevation are included in this figure.
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