New Developments Related to Gross Moist Stability¹

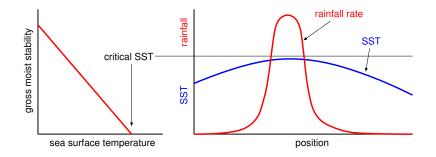
D. J. Raymond, S. Gjorgjievska, M. Herman, and S. L. Sessions

Physics Department and Geophysical Research Center New Mexico Tech

10 February 2014

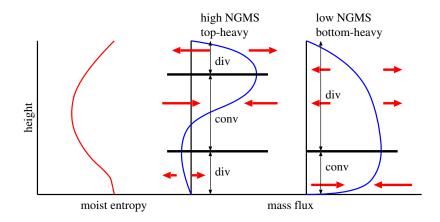
¹Work supported by National Science Foundation (B) (E) (E) (E) (C)

Normalized Gross Moist Stability (NGMS)

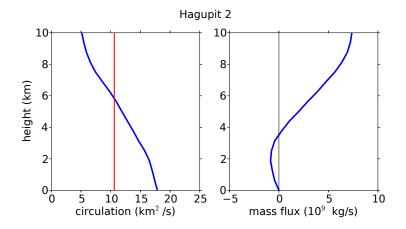

$$NGMS = \frac{lateral \ entropy \ div}{lateral \ vapor \ conv} = \frac{(surf - top) \ ent \ flux}{rain - evap} = \frac{\Delta F_{ent}}{R - E}$$

$$\Downarrow$$

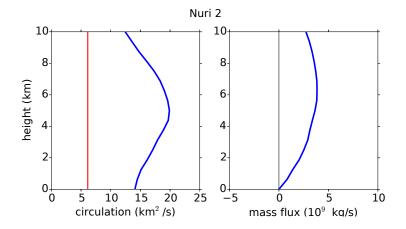
$$R = E + \frac{\Delta F_{ent}}{NGMS}$$
(Noted by Neelin and Held, 1987.)


◆□> <圖> < => < => < => < => < <</p>

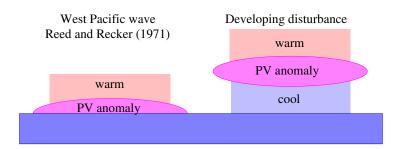
Neelin-Held Model for Gross Moist Stability


▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

NGMS and the Convective Mass Flux Profile

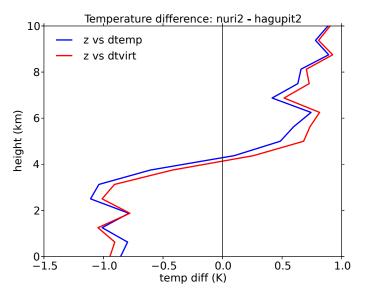

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hagupit2: Weak Wave, NGMS = 0.64

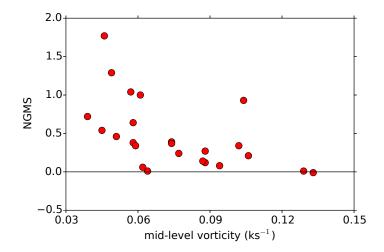


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

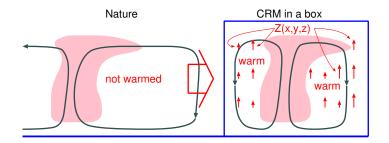
Nuri2: Intensifying Depression, NGMS = -0.01



Thermodynamic Effect of Vortices


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mean Nuri2 - Hagupit2 Temperatures

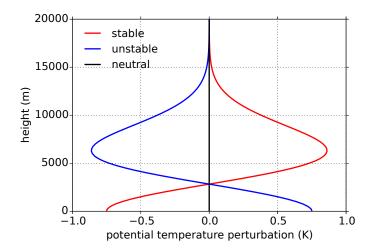

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

From Observations (Saška Gjorgjievska)

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ()~

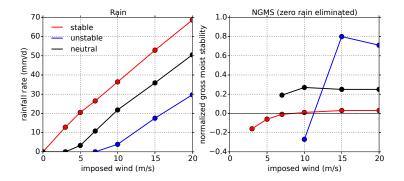
CRM in a box (Mike Herman)

Impose θ cooling tendency: $(d\theta/dt)_{WTG} = -w_{WTG}(d\theta_0/dz)$ Adiabatic lifting needed: $Z(x, y, z) = \theta'(x, y, z)/[d\theta_0(z)/dz]$


$$w_{WTG}(z) = rac{Z_0(z)}{ au}$$
 better : $w_{WTG}(z) = \sum_i rac{Z_i \sin(m_i z)}{ au_i}$

 w_{WTG} is large-scale ascent needed to balance warming.

WTG Simulations of Convection


- Make reference profile: RCE calculation with imposed surface wind 5 m s⁻¹.
- Make WTG calculations with modified reference profiles and different imposed surface winds.

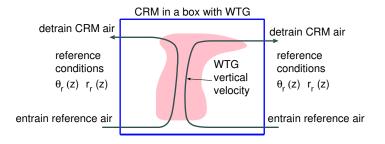
Reference Potential Temperature Perturbations


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

WTG Rainfall and NGMS

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Extensive WTG Calculations (Sharon Sessions)


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Conclusions

- NGMS decreases with increasing mid-level potential vorticity via its balanced effect on thermal structure.
- Rainfall rate increases with decreasing NGMS and increasing surface wind.
- ► ⇒ strong implications for the dynamics of moisture in the tropical atmosphere.

うして ふゆう ふほう ふほう うらつ

WTG Treatment of Moisture and Moist Entropy

Entrained air distributed instantly and uniformly across box at each level (magic!).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@