Radiative-Convective Instability

Kerry Emanuel, Allison Wing, and Emmanuel Vincent

Massachusetts Institute of Technology
Self-Aggregation of Deep Moist Convection

- Cloud Clusters
- Tropical Cyclone Genesis
- The MJO
1. Explicit Simulation of Radiative-Convective Equilibrium

(Work of Allison Wing, and with much help from Marat Khairoutdinov)
Approach: Idealized modeling of convective organization in radiative-convective equilibrium using a cloud resolving model

System for Atmospheric Modeling (SAM) of Khairoutdinov and Randall (2003)

- Constant solar insolation: 413.98 W/m²
- Horizontal Resolution: 3km
- Vertical Resolution: 64 levels
- Periodic lateral boundaries
- Initial sounding from domain average of smaller domain run in RCE
- Fully interactive RRTM radiation and surface fluxes.
Evolution of Vertically Integrated Water Vapor

Day 1 mean TPW (mm)

Day 10 mean TPW (mm)
Evolution of Vertically Integrated Water Vapor

Day 20 mean TPW (mm)

Day 30 mean TPW (mm)
Evolution of Vertically Integrated Water Vapor

Day 40 mean TPW (mm)

Day 50 mean TPW (mm)
Evolution of Vertically Integrated Water Vapor

Day 60 mean TPW (mm)

Day 70 mean TPW (mm)
Evolution of Vertically Integrated Water Vapor

Day 80 mean TPW (mm)

Day 90 mean TPW (mm)
Surface Temperature Dependence

Larger domain needed for high SSTs to aggregate
2. Single-Column Model

- MIT Single-Column Model
- Fouquart and Bonnel shortwave radiation, Morcrette longwave
- Emanuel-Zivkovic-Rothman convection
- Bony-Emanuel cloud scheme
- 25 hPa level spacing in troposphere; higher resolution in stratosphere
- Run into RCE state with fixed SST, then re-initialized in WTG mode with T fixed at 850 hPa and above; small perturbations to w in initial condition
Results

- No drift from RCE state when SST $\leq 32^\circ$ C

- Migration toward states with ascent or descent at higher SSTs

- These states correspond to multiple equilibria in two-column models by Raymond and Zeng (2000) and by several others since (e.g. Sobel et al., 2007; Sessions et al. 2010)
Perturbation shortwave (red), longwave (blue), and net (black) radiative heating rates in response to an instantaneous reduction of specific humidity of 20% from the RCE states for (left) SST525C and (right) 40C. Note the different scales on the abscissas.
Perturbation net radiative heating rates in response to an instantaneous reduction of specific humidity of 20% from the RCE states for SSTs ranging from 25 to 45°C.
Temperatures held constant, IR emissivities depend on q, convective mass fluxes calculated from boundary layer QE, w's calculated from WTG
Results of Linear Stability Analysis of Two-Layer Model:

Criterion for instability:

\[
\frac{\bar{Q}_1}{\varepsilon_1} \frac{\partial \varepsilon_1}{\partial q_1} + \left(1 - \varepsilon_p\right) \frac{\bar{Q}_2}{\varepsilon_2} \frac{\partial \varepsilon_2}{\partial q_2} + \varepsilon_p \frac{S_2}{S} \frac{\sigma \varepsilon_1 T_2^4}{\rho_1} \frac{\partial \varepsilon_2}{\partial q_2} > 0.
\]

- \(\varepsilon_1\): emissivities
- \(\varepsilon_2\): emissivities
- \(S\): Dry static stabilities
- \(S_1\): Dry static stabilities
- \(\rho_1\): Dry static stabilities
- \(\sigma\): Precipitation efficiency
- \(T_2\): Precipitation efficiency

Radiative-convective equilibrium becomes linearly unstable when the infrared opacity of the lower troposphere becomes sufficiently large, and when precipitation efficiency is large.
Interpretation

Ordinary Radiative-Convective Equilibrium

Introduce local downward vertical velocity

Low SST:
- Little effect on shortwave radiative heating
- Reduction of longwave radiative cooling throughout column
- Some reduction in convective heating.
- Net positive perturbation heating
- Large scale ascent: Negative feedback

\[q = q_1 \]

\[q = q_2 \]

\[q_1' < 0 \]

\[\tau_1' < 0 \]

\[Q_1' > 0 \]

\[q_2' < 0 \]

\[\tau_2' < 0 \]

\[Q_2' > 0 \]
High SST:
Strong negative perturbations of shortwave heating
Reduction of longwave radiative cooling in upper troposphere
Increased longwave cooling of lower troposphere
Decreased convective heating
Net negative perturbation heating
Large scale descent: Positive feedback

$q = q_1$
$q = q_2$

$q'_1 < 0$
$T'_1 < 0$
$Q'_1 < 0$

$q'_2 < 0$
$T'_2 \approx 0$
$Q'_2 < 0$
Note:
Once cluster forms, it is strongly maintained by intense negative OLR anomaly associated with central dense overcast. But cloud feedbacks are NOT important in instigating the instability. This leads to strong hysteresis in the radiative-convective system.
Hypothesized Subcritical Bifurcation

Clustering metric

SST

Upper stable equilibrium

Critical SST

Unstable equilibrium

Lower stable equilibrium

?

0

w
Radiative-Convective Equilibrium remains an interesting problem in climate science.

At high temperature, RCE is unstable, owing to the particular dependencies of convection and radiation on atmospheric water vapor and clouds.

Aggregation of convection may have profound effects on climate.

Physics of aggregation may not operate well, if at all, in today’s climate models.