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 The wave-driven stratospheric “Brewer-Dobson circulation”

— Air enters the stratosphere through the cold tropical
tropopause, where it is dehydrated
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 The seasonal cycle in tropical tropopause temperature causes
a seasonal cycle in dehydration, which is imprinted on the
water vapour entering the stratosphere: the “water vapour
tape recorder” (Mote et al. 1996 JGR)
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e Stratospheric water vapour is an important greenhouse gas

e Atrend of 0.4 ppmv/decade (as was apparently observed over
Boulder) over 1979-1997 would have led to global surface
warming that was 44% of that from CO, alone

e Stratospheric cooling maximizes in lower stratosphere, has
strong latitudinal structure; results from relatively low opacity
compared to CO, (see Maycock, Shine & Joshi 2011 QJRMS)
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* Increases in stratospheric water vapour are predicted to lead to
tropospheric circulation changes, especially in the DJF season,
due to changes in the stratospheric wave-driven circulation

— Here for doubled H,O, without surface temperature changes

(a) Diff in 850hPa u (ms™) NH (b) Diff in 850hPa u (ms™) SH

Maycock et al. (2013 J. Clim.)



e It has been argued that an increase in Polar Stratospheric
Clouds (PSCs) could significantly enhance Arctic amplification,
and may have been important during the Eocene

— Would result from increased stratospheric water vapour
due to a warmer tropical tropopause, together with colder
polar stratospheric temperatures

— N.B. The climate model used here is very simple!
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e Observed lower stratospheric water vapour (16-18 km) shows
rather interesting behaviour over recent decades

Water Vapour Anomaly (ppm)

Water Vapour Anomaly (ppm)
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e NOAA FPH: Boulder (40°N)
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scaled anomalies
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Satellite lower stratospheric tropical water vapour anomalies
(red) follow temperature anomalies (black) over decadal
timescales, and show no apparent trend over last 20+ years
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scaled anomalies

difference (0.1

Lower stratospheric extratropical water vapour anomalies do
not follow tropical tropopause temperature quite so closely, but
the decadal variability comes mainly from the entry values
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e Chemistry-climate models generally predict increased
stratospheric water vapour entry values from climate change,
but their performance in the TTL is not necessarily reliable
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 The structure of infrared cooling rates around the tropopause
is quite complicated, differing for the different gases

Spectral Cooling Rates for the Mid-Latitude Summer Atmosphere
Including Water Vapor, Carbon Dioxide, and Ozone
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 Newtonian cooling is a reasonable approximation in most of
the stratosphere, but not in the tropical lower stratosphere

e Scatter plots of modelled temperature and longwave cooling
rates in tropical lower stratosphere (left); fraction of variance
in Q explained by local temperature anomalies (right)
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e Using a coupled CCM, the response over 1960-2010 to radiative
changes in CFCs (right) did not show the expected warming in
the tropical lower stratosphere (left, from a FDH calculation)
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Over 1960-2010, CFCs had a comparable effect on stratospheric
water vapour to that of CO, (vs 40% for surface warming), also
on ozone through strengthened tropical upwelling
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e A strengthened Brewer-Dobson circulation can be robustly
expected from tropospheric warming, from rising Rossby-
wave critical levels on the upper flank of the subtropical jet
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 Together, the cooling from lower stratospheric water vapour
increases and ozone decreases more than offsets the warming
from CFCs (figures show instantaneous tropical heating rates)

 Water vapour and ozone feedbacks are similarly important in
the response to CO, (right)

(a) Net Heating (CFC Effect) (d) Net Heating (CO2 Effect)
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Summary

Stratospheric water vapour is important for climate
— Not just radiative forcing, but also tropospheric circulation

Most important region is lower stratosphere, where the main
driver is tropical tropopause temperature (dehydration)

— Significant variability is observed on decadal timescales

Models predict a long-term increase from climate change, but
the robustness of this prediction is unclear

— The radiative balance around the tropical tropopause region
is complex, with a warming from CO,

Water vapour and ozone feedbacks more than offset the
expected local warming from halocarbons

Water vapour and ozone feedbacks are similarly important in
the response to CO,

— Shows importance of interactive ozone in climate modelling



e The seasonal variation in the BDC leads to a seasonal

variation in lower stratospheric temperature

* Tropical temperatures are lowest in boreal winter,

when the tropical upwelling is the strongest
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e Radiosonde observations reveal variations in the BDC
associated with El Nino

Regression of DJF
temperature onto
Nino 3.4 index

These stratospheric
features must be
dynamically driven

Free & Seidel (2009
JGR)
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Tropical tropopause temperature also controls stratospheric
water vapour on interannual timescales

HZ20+2CH4 anomaly 20S—-20N

Figure shows
T 7

interannual

anomalies in the
3 “tropical tape
recorder” as seen
in HALOE
measurements
from the UARS
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e Spatial distribution of water vapour in the lowermost
stratosphere is quite different from that of other long-lived
tracers, because of the role of tropical dehydration

— Shows H,0 (blue dashed) and CO (red solid) from ACE-FTS,
screened by ozone values to identify stratospheric air

Hoor et al. (2010 ACP)



Relationship between Lagrangian cold-point temperature and
entry value of stratospheric water vapour is nonlinear (left),
but is reasonably linear for year-to-year anomalies (right)
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 The entry value of stratospheric water vapour is controlled by
the “Lagrangian cold point temperature”, which is mainly located
over the western tropical Pacific

— Colours and arrows show temperatures and winds at 90 hPa
— Black contours show PDFs of location of “final” dehydration
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