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Problem Set 2 Solutions 

 

1. A shallow layer of Euler fluid of depth 0h  in a uniform gravitational field, given 

by acceleration g , flows from left to right with velocity 0U and encounters a 

smooth bump of height H . The bottom returns to its initial height rightward of the 

bump. Consider the flow to be two-dimensional (i.e. without variation in the 

horizontal direction normal to the flow). With one exception noted below, the flow 

can be considered steady.  We define a nondimensional number F  (called the 

Froude number): 
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The flow can assume one of two configurations, as illustrated below:  
 

 
                                                                   
      (a) 
 

 
 
      (b) 
 
In regime (b), a hydraulic jump (a stationary bore) occurs downstream of the 
bump; the flow near it is turbulent and dissipative.  
 
 



a.)  For each of the two regimes, find expressions for 2h  and 2U .  
 
Solution: Mass conservation demands that  
 
 0 0 2 2h U h U=  (1) 

 
while conservation of energy leads to 
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Eliminating 2h  between the above gives 
 

 [ ] [ ][ ]0 2 0 2 0 2 0
1 .
2

gh U U U U U U− = − +  (3) 

Clearly, one solution of the above, corresponding to regime (a), is simply  
 
 2 0 2 0;U U h h= = . 

The other solution is one or the other root of what is left when [ ]2 0U U−  is 
factored out of (3): 
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Clearly, the negative root is unphysical, giving 
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Using (1) to solve for the fluid depth gives 
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Note that to be consistent with the way we drew regime (b), 2 0h h<  and thus, 
from (5), we have 1F < . Thus we do not expect to find regime (b) for 1F > . 
 
 
 
 
 
 
 
 



b.)  For regime (b), also find expressions for 3h  and 3U . 
 
Across a hydraulic jump, mass is conserved, giving 
 
 2 2 3 3h U h U= , (6) 

 
but because of turbulent dissipation, energy is not conserved. On the other hand, 
there is no surface drag in this region of the flow, and so vertically integrated 
momentum must be conserved. This means that the change in vertically 
integrated momentum across the hydraulic jump must equal the vertically 
integrated pressure difference across the jump. As demonstrated in class, this 
gives 
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or using (6) to eliminate 3U , 
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Ignoring the trivial solution 3 2h h=  results in 
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The physical root of (9) is just 
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and using (6), the corresponding solution for 3U  is 
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c.)  Find approximate expressions for 1h  and 1U  in the limit that F  is very small. 
 
Mass conservation gives 
 
 ( )0 0 1 1 ,U h U h H= −  (12) 

while conservation of energy gives 
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For convenience, nondimensionalize as follows: 
 
 1 0 1,h h h→  

 0 ,H h H→  

and 
 1 0 1.U U U→  

Using these, and eliminating 1h  using (12) gives 
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where F  is the Froude number of the oncoming flow. In the small F  limit, we 
look for solutions to order F  of the form 
 
 1 .U a bF+!  

Substituting this into (14) and collecting terms of order one and order F  gives 
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so that, to order F , 
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Using (12), the corresponding solution for 1h , to order F , is 
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Thus, for small F , the flow dips and accelerates over the hill. Note that the 
solution only makes sense for 1H < ; i.e., the hill is not as high as the oncoming 
flow.  
 
d.)  Find approximate expressions for 1h  and 1U  in the limit that F  is very large. 
 
In the large F  limit, we look for solutions, to order 1/ F , of the form 
 
 1 / .U c d F+!  

Substituting into (14) an collecting like powers of 1/ F  gives 
 
 1,c =  

 ,d H= −  

so that 
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The corresponding solution for 1h , from (12), is  
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Thus, in the limit of large F , the flow slows and rises at it approaches the hill.  
 
e.)  Extra credit: For regime (b), find an expression for the net horizontal force on 

the bump, being sure to indicate which direction it acts.  
 
The vertically integrated pressure upstream of the hill is 
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while downstream of the hill it is 
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On the other hand, the change of the vertically integrated flow momentum is 



 2 2
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Comparing the momentum change to the sum of the pressure forces, it is evident 
that there is a missing force, given by the upstream pressure, minus the 
downstream pressure, minus the momentum change: 
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where we have made use of (1). Making use of (1) again as well as (2), we can 
write (19) as 
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This gives the net force per unit length of the hill as a function of the upstream 
fluid depth and the Froude number of the oncoming flow.  
 
Oddly, this expression does not appear to depend on the height of the hill. This 
together with the apparent singularity of (15) and (16) when 1H =  suggests that 
there is something wrong with the way the problem has been formulated. Indeed, 
there is. The problem here is that is not necessarily well posed to specify both 
the upstream flow velocity and the depth of the upstream flow. When F  is small, 
the "signal" of the hill can propagate indefinitely upstream, altering the upstream 
condition. Thus this apparently simple problem contains several interesting 
subtleties.  
 
2a.  A barge, floating on a pond, is equipped with a pump which takes water from 

the pond and pumps it out through a hose fitted with a nozzle (a). The 
water may be idealized as an Euler fluid for this problem. The density of 
the water is ρ , the cross-sectional area of the end of the nozzle is A , and 
the velocity of the water as it exits the nozzle is V . Find the force on the 
barge.  

 

         
   (a) 

 



 
The total change in the horizontal momentum flux is simply 
 
 2;AVρ  

that is the net horizontal force acting rightward on the barge.  
 
2b. Consider the same problem as in 2a, but this time the pump is located on a 

dock (fixed to the ground; see (b)). For the purposes of this problem you 
may neglect gravity and assume that there are no tensile forces acting on 
the hose. What is the force on the barge? How might your answer change 
if you allow for friction of the water flowing through the hose?  

 

       
                                                        (b) 
 

This is a subtle problem. The net reaction force is still that given in (a) above, but 
where is it actually felt?  
 
One way to think about this problem more easily is to move the pump down the 
pipe, so the configuration looks like 
 

        
 
Now suppose that the cross-sectional area of the hose (before it enters the 
nozzle) is 'A  and the velocity of the water in the hose is 'V . From mass 
conservation, we have that ' 'VA V A= . Now the change in horizontal momentum 

of the water going around the bend in the hose is just 2 2' '
'

AA V AV
A
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. This 

must be the rightward force acting on the dock. Since the net force acting 



rightward on the whole system is 2AVρ , the force on the barge is the difference 
between these two: 
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AForce AV Aρ= −  

Thus if there is no nozzle on the hose ( 'A A= ), there is no force on the barge.  
 
If we add friction to the problem, the water flowing through the hose will exert a 
leftward force which must be added to the reaction force. Thus, in the case of no 
nozzle, there will actually be a leftward force on the barge, when friction is 
considered.  
 
3. (Extra credit)  Consider the problem described in problem 2b, but allow for 
gravity, so that the hose sags. Assume that the hose has infinite tensile strength 
(it cannot be compressed or extended along its length) but has no resistance to 
bending. Neglect friction of the flowing water. What is the force on the barge?  
(Note: to get a quantitative answer, you might want to consider special 
configurations of the hose.)  
 
Suppose the hose has the shape shown below: 
 

         
 

 
The hose is assumed to have the same diameter everywhere except in the 
nozzle. Note that the change in horizontal momentum at points A and B are 
equal and opposite, as are the changes at points C and D. Since the hose has 
tensile strength, these forces cancel each other. Thus the only uncompensated 
forces are at point E and at the nozzle. In this configuration, all the force must be 
taken up by the barge, and so the answer is the same as in part (a) above, 
namely 2AVρ . 


