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Abstract

Free convection between two interconnected reservoirs, due to density differences main-
tained bv heat and salt transfer to the rescrvoirs, is shown to occur sometimes in rwo different
stable regimes, and may possibly be analogous to cerrain fearures of the oseanic circulation,

The density of sea-water is modified while
at the surface by two distinct processes: heating
and cooling, which change the temperature,
and precipitation and cvaporation, which
change the salinity. In many important oceanic
regions these two density modifying processes
work contrarily to one anather. For exam le,
the water in and above the main thermocline
in all subtropical occans is able to float on
top of the Sc-nscr deep water (we neglect
here all consideration of the “salt-fountain”
effect) because its density is depressed through
surface heating — but the excessive evaporation
in these same latitudes is able to increase the
salinity of the surface waters to such an extent
that in general their density contrast with deep
waters is only one half of what it would be
on the basis of temperature alone. In some
large semienclosed scas (e.g. Mediterrancan
and Red Seas) subject to similar surface
heating and evaporation, the salinity can have
a predominant influence on the density field.
By qualitative comparison of these cases we
form an impression that the heat transfer
mechanism has a more rapid effect on the
density of a newly arriving parcel of water,
but that in the long run, given sufficient time,
evaporation can reverse the thermal influence.

We do not know enough about the details

of occanic circulation to pursue these questions:

in their full complexity in nature but we can
explore their implications in simple idealized
systems, That is all we propose to do here.

First, let us consider a very simple system.:
a vessel of water stirred so as to maintain
uniform temperature T and salinity S. (fig. 1).
The walls of the vessel are made of a porous

substance which permits transfer of heat m
salt in a simple linear fashion: g

[
fd}—sr(,‘l’— T)

8
Z=d(s-9)

T and § are the temperature and sallrutyuu-

side the wall and are regarded as fixed.

dy
P
dx
sl

The quantity 6 is considered to be a small
wntity, that is we are most interested in
smuations where the salinity transfer coefficient
Jisless than the temperature transfer coefficient
o & < 1. No matter what the initial values
of xand y =53y Xo and pgat r=o0-the initial
fmal cquﬂibriun! statc as T o0 s X =1, y=1,
4¢ solutions of the above cquations being,

i general

ymt+om 1) e
x=1+(x—1) ™
Morcover, the temperature approaches its
ptotic value more quickly than the

Now let us consider a simple form of
cqnatiun of state

. 0=00 (1- T +S)

The equations may be made non-dimclg* which, when expressed in terms of the non-

sional if we introduce

stirrer

ZPorous walls

Fig. 1. The idcalized experiment, consisting.
stirred vessel of water with remperature T :
(in general variable in time) scpaﬂied by P T
from and ourside vessel whose tem
mty S are maintained at constant
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dimensional quantities x and y is
¢=00 [(1 + (=T) (= y+Rx)]

where R=f S/zT, a measure of the ratio of
the cffect of salinity and temperature on the
density in the final equilibrium statex =1,y = 1.
We are interested primarily in cases where
R>1, because this corresponds to the case

here the density at x = 1, y = I is greater than
tat at x =0, y = 0. The time rate of change of
ty at any umc is
"
-%=QU’I'{— 14y+ RO (1-x)]

1 the special case x, =y, =0, the quantity
A< but R> 1 then in the beginning at 7=o0

densicy at first decreascs, bue eventually
Meeases again unil at 7= o it is greater than
ing. The entire process can casily
& Visalized on an S, T diagram or in non-

A al terms, the x, y plane. In figure
£s Df constant tli‘“sit)' ant!"l:&l}‘

2
Eler | f{(x']'] are drawn for the case R =2.

densicy anomaly is o at the initial condition
= :
=0, and at the asymptotic limit 7 -2,

=X 156, »
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Fig. 2. Non-dimensional salinity-temperature diagram
show lines of constant density {6 is density ano )
for the case R - 2. The points marked 7 = o,
3, 5. o illustrace values of temperature and salinity at
succesdve instanes of time for § = 1f6

the density anomaly is + 1, therefore the fluid in
the time dependent process in the case where
/¢ are plotted as points along a curve for
increasing 7. During the carly stages the
density decrcases, until at T=1 it begins to
increase a At about 7—4 the density is
back at its initial value and heneeforth in-
creases to its asymptotic limit as 7 oo,

Another way of visualizing the different
rates of the salt and temperature transfer
processes in controlling the density is to
consider a simple steady state process, i which
water at T=o0, S=o0 Hows into the vessel
at rate g, and the mixtre is withdrawn at
the same rate. The arrangement for this ex-
periment is shown in figure 3. The equations
describing this state are

{i‘T

o mg= e T~ T =T
a gl
ds o sl g
5 =o=d(5-5)-¢58

and reduced to non-dimensional form as before

1-(1+f)y=o0
d-(0+flx=0
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Fig. 3. The idealized swady state experimient.

where f*=g/c denotes a dimensionless flow rate.
The equilibrium values of x, y which obtain
in the vessel are

I_
P=1sF
.

4L

The water which enters the vessel has zero
density anomaly. When it leaves its density
may be greater or less than that entering
depending upon the flow rate f*. The points x,
y carresponding to the salinity and tempera-
ture of the outHow lie along the curve:

depicted in figure 4 for the value =1/, The
actual points ¥, y for certain choices of flow
rate . The shape of the curve depends only
upon 8. The position of the points x, y on
this curve depends only on f°. If we now
choose R=2 as before we can draw the same
lines of density anomaly as in figure 2. Hence
the most dense outow occurs for very
small discharge rates "0, the outflowing
water being denser than thar flowing into
the vessel. On the other hand, the position
of points for which !/, - = indicates
that in this range of discharge the outflow is
less dense than the inflow. The purpose of

/
bie i [ |8

I
Fig. 4 Values of non-dimensional temperature y al
salinity x for steady state experiment (fig. 3) for differn

rates of fow, [ i

0
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exploring these extremely simple models by
been to lay a groundwork for the remars
made in the introduction where 1t was stated
that the very different density structure m
the Adantic and Mediterrancan might be.
simply due to different rates of flow, the.
models are obviously too idealized for direct |
application to natural conditions. :
They are, however, suitable to use s
basis g
the density transforming processes: in partie
ular the fact that the fow rates in free com
vective systems depend upon the dens
differences themselves. There is a kind

or cxploring further consequences of :

5 Two vessel experiment, with rate of low, 7, through
apillary determined by the density difference berween
3 wwo vessels. The upper averflow 15 provided so
e the surface level in each vessel remains the same,
The density difference between the two vessels depends
@ the flow rate as well as the nature of the transier

through the walls.

% The flow 4 is positive if directed from vessel 1

wvessel 2, and negative otherwise. There is,
o course, a counterflow of the same amount
wuming through the overflow, so that the
wolime of water in each vessel remains the
ame.

We are concerned with solution of symme-
mic form, so we can define a single tem-
pare T=Ty=-T, and a single salinity
§=8,= — 8., 50 that the laws for conservation
of temperature and salinity are simply

‘i‘]‘
4 —T-1)- 24| T
L v

G = (5 5)-|al$

It is important to note that in the second

“feedback’ of the density difference p
upon the flow rate which produces ity
now must be introduced into the system
simple way. The easiest way to 3
this is to introduce another stirred
surrounded by a resevoir at—T,
shown in figure 3.

The two g\-’csscls are connected by
overflow at the top so that free sul
water is level across the top ot €aci
Connecting them at the botrom 152
tube whose resistance k is such that the
in the tube is directed from the hig
{high density) vessel toward the low P
(low density) vessel by a simple lineat

kg=0,-02
v Telhus XIL

rm on the nght hand side the flux enters

Ly with an absolute value sign. This means that

- B exchange of properties is insensitive to the
di'_ tction of the arculation. Introducing the
Previous notation, and defining

faa2h
° C

c
" . (l?osfj')k

B : e
Propriate non-dimensional forms of
tions describing the systems are

dy
B &-rr-lfly
I (156, 3
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wessel | Vessel 2 dx
— =8(1-x)-|f|*
o overflow e dr ( ) !fl
= Mf=(-y+Rx)
s -5 PSP 7
1 s The last equation implies that the flow in
7 -7 5 the capillary 15 in 2 series of quasi-equilibrium
| states—since no time derivatives occur in it
N JJ__ Substitution of the last equation into the first
copiliary two, to climinate f, yields two non-linear
= cquations

—v=1-}'--%|—y+Rx

—zé(x—x)—f

- 3 -y+Rx

The points of equilibrium correspond to those
values of x and y for which dy/dr and dx/dr
vanish, thus leading to a cubic for y i terms
of x. There will, therefore, sometimes be three
real solutions, or three sets of values of x, y
which are equilibrium points. A simple graphi-
cal construction enables us to sec under what
condidons several equilibria are admtted
Solving the first two equations for x and p,
stationary state, we obtain

= 1
T

Af=4(f: R8)= (_ e R )

1T |79

In figure 6 the function ¢ (f; R, 8) has been
plotted as a function of f for R=2, and for
two choices of 8, =1, and 6 =1/,

-Piral)

Fig. 6. Graph for determining the equilibria of the two
vessel comvection experimens (see text).
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The solution (or real roots of the cubic)
occur where this curve intersects the line Af.
Two lines are drawn, one for A=1 and one
for A=1/5 A is defined as positive.

In the case R=2, =1/, A=!/, there are
three intersections, Jocated at points a, b and ¢;
thc correspond[ng apprnxiumtc va[ut‘s of t]'lc
roots are f= - 1.1, -0.30, +0.23. These rep-
resent three different ways in which t
simple convection can occur between the
coupled vessels without change in time, With
a somewhat larger value of 4 the line cuts the
function ¢ (f; 2, /,) in only ene point—
in the case A =1, it cuts at d only.

For certain choices of the parameters R
and 4 there are forms of ¢ (f; R, &) for which
no choice of 4 can produce three real roots.
For example, the choice R =2, §=1 gives only
one intersection (¢ or g) for any one choice
of 4. It can be seen that this is always true
when ¢ (fi R, 8) has no zeros. To explore
the limitation on zeros of the ¢ function, we
note that if ¢= o then

I 1

TRy
or

(1-R)d=(Ro-1)|f]
Thu_s the necessary condition for three inter-
scctions 1s
Rd<1
Rd=1

if R>1
or fo<R<1

To be a sufficient condition 2 must also be
small enough.,

Proceeding now to the x, y plane (dimen-
sionless, S, T' diagram) we can draw as before
the lines of equal density. These, of course,
coincide with the lines of equal flow fin the
capillary. In figure 7, the three equilibrium
points a, b, c, are located for the particular
case R=2, =1, A=1/,. The locatons are
computed from the values of flux fas deter-
miued in figure 6. The paths which temperature
and salinity follow in the course of approaching
equilibrium points can be plowed by the
method of isoclines as given in SToker (1950),
a few are sketched in figure 7.

Both a and ¢ are stable equilibrium points.
Upon detiled examination by the method
of Poincaré it can be shown that point a
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Temperature

Salinity

Fig. 7. The three equilibria a, b, and ¢ for the two o

convection experiment with B = 2, § = 1f6, _,t_”’-.-\
A few sample integral curves are sketched to show lb“:

stable node o, the saddle b, and the stable spin ¢

is a stable node, whereas point ¢ is a stable
spiral. Point b on the other hand is a saddle
point, so that the system would not stay'i
that state if perturbed ever so slightly,

A similar sketch for the system where only’
one equilibrium point (¢ in figure 6) in
system where R=2, =1, A=1/, is shown

gure 8, It is a single stable node.

The fact that even in a very simple co
tive system, such as here described,
distinet stable regimes can occur (as in
7)—one (point a) where temperature d
ences dominate the deusi giffcm:m,
the flow through the capillary is from
cold to the warm vessel, and the other Wl
salinity dominates the density differenceso
the flow in the capillary is opposite,; ¢
warm to cold—suggests that a similar situatl
may exist somewhere in nature. One w
whether other quite different states of
are permissible in the ocean or some estt
and if such a system might j“m{nm
of these with a sufficient perturbaty
so, the system is inherently froughtd
possibilities for speculation ~ about d
change. Such a perturbation could be it
momentary state of the system-—¥
parameters remaining constant, or it

Tellus XTI |
(
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j a slight change in the parameters. Refer-
ing to figure 6 to see the effect of a slight
3 ase in A we see that if 4 were to become
;‘.ighd}' greater than .13" the two intersections
;and b would vanish. Thus, in the system

- J‘P-mn;d in figure 6, a sl ht_change in A
muldcaust:thc temperature dominated circula- -

gon at a to jump over to the reverse salinity
grealation at ¢, and it would then stay there
wen when A was restored to its original value.

._ Wnﬂix

The question of the stability of the equilib-

; { fum points is difficult to decide by graphical

nstruction. We  let x=X+x, y=Y+y
shere X and Y are values at a particular
librium point; hence they satisfy the
relation.

- ?_.*;’_1?_ RX]|

[ =l

0=6{1- X-=|¥-RX|

>

The quantities x* and y* arc regarded as
small departures from X and Y and we form a
ized cxpression for dx'fdz and dyfdv
which is valid in the neighborhood of XY
by substitution and dropping all products of

The single stable node £ for the case Rz, =1,
A=afs,
XU (1961), 2
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Yaz9
Moreover it is mnecessary to distinguish
between two cases: (1) where the values Y >
RX, (2) where Y<RX. Equilibrium points in
case (1) have negative f in case (2) positive f.
One must allow, in this way for the absolute
value sign. Forming the quotient of the two
lincarized perturbation equations, leads to
the general form
dy’  ax’+ by’
& o wdy

where the coefficients a, b, ¢, d are defined
separately for the two cases as follows

! [ Case (1) Y= RX | Case (2) V-

] f<o

a| RYJA — RY/
b|-1-(2¥-RX)A| -1 +(2¥=RX)2
¢|=8+(2RX-Y)A| -6-(2RX-Y)/2
_A_‘j""‘ X/
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Table 1. Numerical Calculations on Stability of Equilibrium Points.
System Re=2 =1 1
=1y (Rem2 §= .
I 1 Aa:lh
J:_‘ —I1.10 —o.30 +o.23 i 4176
T,'zsc (r) (1) (2) | ()
‘? o.13 0.36 0.42 f 538 i
0.48 0.77 0.81 ©.36
. 450 7.70 —gre —y60 || Temperature and Steady State Vertical Heat Flux in the Ocean
. - 35“ —5.10 2.90 —tog P
03 3.18 —4.52 —6
d —ots 38 #s2 | 540 Surface Layers
b~—¢) - . S
L«d £y ;"-5 68.4 55.0 201 By ERIC B. KRAUS and CLAES ROOTH, Woods Hole Oceanographic Institution?
. oo —I12.5 —35.5 —68.1 | = 4
(b} + yad 8.0 12.9 —r13.1 i gg {Manuscript received January 17, 1961)
ad —138 [
be - —b.48
—16.2 ——
ad—be s ' Siga Abstract
. I -0
b — 347 . The occurrence of a quasi-isothermal surface layer is shown to be a necessary consequence -
L ‘. i —1.62 | —7.40 . of the vertical distribution of heat sources and sinks, which requires an upward transport of
" - il heat. The depth of the convective layer depends essentially on a balance berween the absorprion
¥ B £ 2 of visible radiation within the layer and the loss of heat at the surface. V i 3
[~ a B z below the isothermal layer are primarily caused by vertical motion. Mume
= =2 = = | - trate the effects of meteorological conditions on the heat lossand hence on the surface ¢
k- ! = 3 - and thermal structure belaw.
g 0 & @ { F:
2 7]
2 = = |
= = ) =) i - . .
= = = = s 1. ltroduction profile below upon the rate of upwelling and
Fig. 1 shows two sets of temperature sound-  Upon the _climatic conditions ;.nhn\:c. )
ings. The left hand side represents the vertical The sea is cooled by evaporation, conduction
The wmperature distribution in the sea at 16° 25 N, and infra-red radiation. These processes are
} ° 00" . ntial te . concentrated on the surface. On the other
21" 09’ W and the pote clmperature in

Stable if b +¢ <o

(A) Node if ad - be <o
Unstable if b +c> 0

(B) Saddle if ad - bc >0

{
[
{

Typel (b- f)’+4ﬂﬂ'>o{

Stable if b+c <o

(A) Centerif b+¢e=o0
Unstable if b+¢c >0

Type It (b= o) +gad<
ypell (b-q?+4a 0{{B)Spira]ifﬁ+c-,ﬁo

Stable if b+c <o

Type I (b~ c)* +4ad=0 Node
Unstable if b +¢> 0

The numerical values of all
figures 7 and 8.
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quantities are calculated in Table I for the systems sho
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e hand, hcating by the absorption of visible
light from the sun and sky affects an appreciable
lIL‘lJl'h, p-.\rlu‘ula'rly mn bio[uglta]])' unproductive
oftshore waters. There must be thercfore a
layer through which heat is transported up-
wards. As a result, the ocean surtace should
be somewhat cooler than the water below, an
effect observed recently by Fwine and Me-
ALisTER (1960},

In low latitudes where the sea gains more
heat than it loses, the upward heat fux affects
only a layer of limited dt‘Pﬂl. Absorption of

the air over Sal (16° 44" N, 22° 57" W) in the
. Cape Verde Tslands on the same day. The
rigE:hmd side represenes simultancous sound-
in% at 17° 33" N, 81° 11" W in the Caribbean
and over Grand Cayman Island (19° 18’ N,
‘422" W). Why have these curves this partic-
thr shape, which is fairly typical for condi-
m i-n ThC castern a“li woestern J]largills Of
¢ sub-tropical Atlantic? Why is the surface
‘ifiperature about 26° C and not 22° or 30°

“A full answer to these questions requires a
flecdgc of the three dimensional distri-

ution of temperature and velocity in the
*. dmosphere and the accans. It involves there-
ore 2 knnw]udgc of the whole general circula-
Yon. The aim of the present discussion is
oze modest. It intends to show the depend-
Y of the surface temperature and of the

Conttibution No. 1195 from the Woods Hole

hic Tnstitution,

X111 (19gyy, 2

1

solar energy in this layer must be sofficient
to compensate for the heat loss from the
surface. We may hence expect to find a level
where the vertical heat flux changes direction.
On the average, between 30° N and 30° §, the
amount of energy lost from the surface is about
5—10 times as large as the amount which is
['“.'i“g rctainc({ .'iI'IL{ i)I:CL‘ll'l(s J\f'ﬂ“j:{h[&' l:nr CX]TDIK
by ocean currents to extra~tropical latitudes.

A turbulent upward Aux of hear will be



