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Simulations of climate warming: declines in
annual-mean snowfall in many regions
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Krasting et al, J. Climate, 201 3



What about snowfall extremes?
(heavy daily snowfall events)

* |Important because of disruption of transportation (roads, air, rail),
business, schools

* May not respond to climate change like mean snowfall
e.g., heavy snowfall events in both anomalously cold and warm years (Kunkel et al, 201 3;
Changnon et al 2006)



Regional studies of observed snowfall extremes:
Decadal variability but inconsistent long-term trends
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FiG. 6. Nationally averaged 20-yr return values (relative to the values for 1971-90) of annual maximum daily
precipitation, rainfall, and snowfall. The 20-yr return values are first estimated using 20-yr running windows for every
station, and then normalized by the values estimated for the period 1971-90. Values are plotted in the center of the
20-yr window.

Zhang et al, |. Climate, 2001 (Canadian observations)



Effect of climate change on daily snowfall
extremes in global simulations

* High percentiles of daily snowfall in liquid water equivalent

e CMIP5 (use 20 models) under RCP8.5

* Compare warm climate (2081-2100) to control climate (1981-2000)



Analyze according to climatological temperature in
control climate
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Grid boxes and days binned by climatological monthly
surface air temperature in control climate
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Response of mean snowfall to climate warming:
ratio of warm over control-climate values
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Weaker response of daily snowfall extremes as

Ratio (warm/control)
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Features of the response of snowfall extremes that
would like to understand:

e Climatological temperature at which snowfall extremes response
goes from positive to negative

* Weaker fractional changes at higher percentiles



Simple theory (based on known physics/
observations) for the response of snowfall
extremes to changes in climate



Theory assumptions |:

Relate daily snowfall rate (s) to precipitation rate (p)
and surface air temperature (T)

s = f(T)p

Snowfall fraction: f(7)
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Theory assumptions 2:
Relate precipitation rate (p) to temperature (T)

A

p=e’'p
B = 0.06°C~!

* Normalized precipitation variable p behaves like upward velocity;
follows gamma distribution on wet days

e Temperature is normally distributed and independent of p



Integral expression for gt percentile of snowfall (s
gral exp qh p q
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where the fraction of wet days is wand h(7T") = e_ﬁTf(T)_1

— Evaluate using asymptotic methods for large sq



Asymptotics gives expression for snowfall extremes
that involves optimal temperature T,

3 w Ry _ (T=Tm)’

hm §_k ’}/thm p— _— 202
(8qhm)* " e o (1= )Tk \



Temperature dependence of snowfall reaches a
maximum at T, (roughly -2°C)

f(T) exp(B T)

Surface air temperature (°C)

Competition between increasing precipitation and
decreasing snowfall fraction with increasing temperature



Simple result if only mean temperature changes
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Ratio (warm/control)

Theory matches simulations
(and dynamic changes don’t matter very much)
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Shading shows interquartile range of model ratios



Changes in snowfall extremes don’t depend on

percentile q!
0T (= OT
5Sq — 5 (T | Tm>
g“yh, 2

Example: same change for 99th percentile
as 99.99th percentile

= 084/8q — 0 as s, =



Fractional changes in snowfall extremes tend to zero
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Intuition: Probability of optimal temperature (Trm) for
snowfall extremes does change as climate warms
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Results in changes in snowfall percentiles
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Results in changes in snowfall percentiles
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Conclusions

e Simulations: Smaller fractional changes in snowfall extremes
than in mean snowfall in many cases

e Simple asymptotic theory: captures main features of response
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* Implications: detection and perception of climate change,
changes in snowfall extremes still likely to have impacts






By contrast:
Probability of snowfall and mean snowfall decrease
substantially

A <— Snow Rain —
L
a)
o
<
@)
9

/ 0°C T
Big decrease in area under curve to left of
rain-snow transition temperature



Rapidly changing snow cover in Northern Hemisphere

14

12

Y
o
|

Extent x 10° km?
[84]

4 4 —— June Sea lce (1979-2012) -3 8%/decade
—— June Snow Cover (1979-2012) -21.5%/decade
Sept Sea Ice (1979-2011) -10.8%/decade

2 I T T T T I T
1980 1985 1990 1995 2000 2005 2010

Figure 2. Time series of Northern Hemisphere June snow cover (NOAA snow chart CDR) and sea ice extent (NASA TEAM)
for 1979-2012 (1979-2011 for sea ice). Thick line denotes 5-yr running mean.

Derksen and Brown, GRL, 2012



Probability of snowfall given that precipitation
occurs

100
i e oa i

Co
®)

(0)]
o

N
o

Conditional Snow Frequency (%)

550-600hPa %——% |

750-800hPa »------ X

All |EVElS (Sr——)

20 —
N
N,
000, oo
0 —— — PARSE RETT)
—_4 -2 0 2 4 6 8

Surface Air Temperature (deg.C)

3-hourly synoptic weather reports over land aggregated globally

Dai, GRL, 2008



Rain-snow transition in climate models (CMIP5)
versus observations
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- 3-hourly observed (Dai 2008): 2 curves depending on whether mixed counted as snow
- Daily accumulations in multimodel median (black) and individual models (gray); snowfall
taken to occur if precipitation is 50% solid



Intuition: snowfall extremes occur when

temperatures close to freezing
(otherwise too cold to snow heavily)
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Note snowfall extremes remain at roughly same temperature (with same
humidities) as climate changes - unlike rainfall extremes



Quiz: World record daily snowfall

Where!

How much (inches of depth)?



World record (probably): 75.8 inches in 24 hours

38 MONTHLY WEATHER REVIEW FERRUARY 1053

RECORD SNOWFALL OF APRIL 14-15, 1921, AT SILVER LAKE, COLORADO

I. L. H. PAULHUS
U. S. Weather Bureau, Washington, D. C,
[Manuscript received January 27, 1953]

ABSTRACT

A snowfall of 87 inches in 27% hours on April 14-15, 1921, was reported at Silver Lake, Colo. This snowfall, if
correctly measured, exceeds others generally accepted as being record values for the United States. Consequently
it is important to determine the reliability of the observation. There is no evidence to indicate that the measure-
ment was any less reliable than that of other heavy snowfalls, and it appears that a snowfall of this magnitude is
meteorologically possible. The Silver Lake snowfall is therefore acceptable as the highest known recorded value for
the United States.



Changes in precipitation extremes:
some aspects are well understood!

* Theory
¢ Climate models

e Observed trends



Theory: factors controlling intensity of precipitation
extremes

Precipitation rate
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O'Gorman and Schneider, PNAS, 2009
O'Gorman and Schneider, |. Climate, 2009



Extreme precipitation (mm/day)

Growth of precipitation extremes
with warming in simulations with climate models
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O'Gorman and Schneider, PNAS, 2009



Climate change (% K1)

Problem: Response of tropical precipitation
extremes varies widely between models
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Climate change (% K1)

Problem: Response of tropical precipitation
extremes varies widely between models
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Percentage increase per degree warming

Observed trends in annual-maximum
precipitation over land
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Sensitivity (%) of annual maximum precipitation per kelvin warming of global near-
surface temperature (1900-2009; records > 30 years), with light blue shading indicating
the upper 97.5% confidence bound

Westra et al, |. Climate, 201 3



Temperature (°C)

Intuition: snowfall extremes occur when

temperatures close to freezing
(otherwise too cold to snow heavily)
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