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Role of the ocean in the coupled hydrological cycle
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freshwater transport by the oceans.
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It’s a coupled problem
- but to what extent is the ocean active in this coupling?

Acknowledge collaboration with David Ferreira and Aaron Donohoe at MIT



Briefly touch on three aspects of coupled hydrological cycle

Does oceanic freshwater transport place constraints
on atmospheric water transport?

Is the ocean passive, or a true partner?
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’) Zonal asymmetries in the hydrological cycle
- organization of atmospheric storm tracks.

Localization of deep ocean convection
in the north Atlantic

3 Role of ocean in inter-hemispheric asymmetries in climate
- implications for atmospheric hydrological cycle.

Why is the ITCZ north of the equator?
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Hydrological cycle in coupled aguaplanet solutions

Barriers introduce geometrical
constraints on ocean circulation

Ocean can run currents
along boundary,
connecting the
hemispheres together

Use to explore the role of the
ocean in the coupled system

Rich solutions which exhibit
Earth-like properties

Emphasize aspects that relate
to the hydrological cycle
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Climate of anaqua-planet
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1 | Does oceanic freshwater transport place constraints
on atmospheric latent heat transport?
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Ocean FWT is ‘slaved’
to the atmosphere.

Figure 1. Left: (top) Zonal- and time-average of Evaporation minus Precipitation (in mm /day)
and (bottom) time-average ocean FWT (in Sv) for Aqua, Ridge, Drake and Double-Dirake. Right:
Residual-mean MOC (in Sv), the sum of the Eulerian and (parameterized) eddy overturnings.

Ferreira and Marshall, 2014

Clockwise and counterclockwise circulations are denoted by red and blue shadings, respectively.



Zonal asymmetries in the hydrological cycle
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Deep Overturning circulation is confined to the small (salty) basin
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Role of ocean in inter-hemispheric asymmetries in climate
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NH is warmer than the NH because of ocean circulation

Drake minus Ridge
zonal-average temperature
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Heat transport can be up-gradient in the ocean
because the ocean is mechanically forced
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Tentative support from observations of Earth’s radiation budget

, Aaron Donohoe
Atmospheric/ocean heat transport

across the equator
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Fig. 2 Encrgy input at the TOA and its relationship to energy flux
across the equator. AHT g and OHTg, are the atmosphenc and
occanic heat tmanspont acmss the equator respectively. The rismbers
ame estimates obtained in this study wsing observational neanalysis and
satellite data The error bars in all Auxes are order =01 PW. OHT
transpont 15 estimated as a residwal

See Graeme Stephens — later this afternoon
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Conclusions

1 Oceanic freshwater transport is slaved to atmosphere
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) Salinization leads to localization of deep convection in the

small basin and an inter-hemispheric overturning cell.

3 Inter-hemispheric energy transport due to ocean circulation warms

the NH and leads to a northward shift in the position of the ITCZ.

Annual Mean Precipitation Map and
Latitude of Maximum Precipitation at each longitude (blue line)
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